京公网安备 11010802034615号
经营许可证编号:京B2-20210330
零售百货的大数据转型, 怎么转才能行_数据分析师考试
从目前各大报章杂志的分享文章来看,不难发现零售百货业除了谈新增在线电子商务渠道外,就是谈如何做好库存管理、如何防损、如何陈列等,营运的核心大多落实在商品本身。不置可否,这些都是成为一个好的零售百货要有的基本功,因为将商品卖出是企业基本的获利公式。但当你回过头来想,这些商品售出获得的营收,贡献来源是什么呢? 答案很明确,就是掏钱的顾客,当顾客走进你的门店,你完美的陈列才开始发挥作用,你的库存管理才开始有意义,而电子商务正是抓准时机,运用网络上一览无遗的消费者行为数据,以顾客为核心做决策及广告宣传,精准营销成功提升利润空间,那么我们何不让线下实体商店,也借由消费者交易数据,来为营销做更好的决策。
从经营商品到经营顾客的大数据时代思考
零售百货应该从过去“经营商品”的思维,转向以消费者为核心的“经营顾客”,而大数据时代,正是观点转型的最好时机。举例来说,过去零售业大多停留在营销1.0的被动策略,消费者要什么,商家就尽量提供,或以营销2.0主动策略,创造差异化去吸引消费者,虽然已从产品核心转向消费者核心,但创造的价值又不见得让消费者赏脸!大数据时代,是带领零售百货业走向互动营销3.0,经营需求的革命时代。过去,我们只能借由数据解决问题,而现在,我们能预测未来,从掏钱顾客的真实行为数据中,算出在什么时机,提供什么商品宣传,顾客会再把钱掏出!并在顾客付钱的同时,获得数据反馈,成为互动学习循环,使营销在决策中能不断优化,而消费者也能获得越来越好的服务,增加对品牌的黏度、忠诚度,最后零售百货业不但能提升营收利润,更能从经营顾客的数据中,规划商品策略。
MIGO功典信息CEO陈杰豪举例,通过经营顾客的方式,将某个内衣品牌客户的所有顾客数据如网站浏览轨迹、下单产品及频率、年收入、过往消费习惯等一一记录卷标,这些大大小小的标签,通过大数据的运算让每个顾客跃然“报表”之上,并找到“最可能在12月购买的顾客”,推播客制化的商品讯息,使每年业绩最差的12月,成功转为营收大幅提升的最佳月份。
当大家都在说零售百货受到电子商务冲击,该转型的同时,你的营运观点转型了吗?把过去习惯分析的商品销售营收方程式放到一边,改为经营顾客的营收方程式吧!
不要猜!人店物通了,钱流就通了
要成为经营顾客的零售商,数据的整合流通是很重要的一环,让交易数字与顾客数据串连,线上与线下顾客的资料配对,看到顾客、门店、商品之间的数据关系,才能真正掌握大盘,做出适当的决策。现如今营销面临的问题,是习惯使用的ERP、CRM或POS系统,数据皆分开独立记录,2014年的一项零售调查显示,大部分的零售商拥有的POS机不支持多样化的数字或跨渠道的购物体验,传统的POS系统是目前最迫切的技术障碍,营销人在这些碎片化的数据当中,只能看见数字结果,难以进一步交叉判断造成的原因,最终只能凭借着经验和所谓的常规拍脑袋决定;这种用“猜”的决定,一直是做营销的痛。而大数据时代,零售百货就应该利用大数据的搜集整合,将“猜”的元素拿掉,透彻了解顾客、门店、商品之间的关系和营收组成结构,规划有凭有据的精准对策,钱流也就跟着通了。
举个例子,当店家发现营收下滑,营销人员照例打开POS系统产生报表,检视品项销售状况、来客数与客单价等数据,然后一眼看到来客数下滑,就直接判定了来客数疲软不振是造成营收衰退的罪魁祸首,立马决定砸下百万预算,安排来店赠礼活动增加来客数,期望能够一举提升销售动能、拉抬业绩。结果来客数确实明显增加了,但营收却仍旧没什么起色,这一切归根到底都是因为数据的碎片化所造成的后果。藏在数据背后真正造成店家营收下滑的原因,其实是高贡献度的忠诚顾客大量而且快速的流失,活动提升的新顾客对营收帮助渺小。当务之急应该是先找出忠诚顾客流失原因、制订客户挽回方案,固本补破再去招客。
看错了数据、会错了意,不但会让店家消耗了无谓的营销预算和时间,更给了竞争对手可趁之机,这一来一往之间,胜负立判、能不慎乎?
进入大数据营销真的不难
大数据议题已发酵了几年,但真正落地执行,甚至产出价值的却不多。企业往往将问题归咎于自身规模是否够大、资源或数据量是否充足而观望不前。事实上,想加入大数据营销,并没有那么难,因为数据营销带给零售业的决策优化,关键不在于数据多寡,也无需大量投入资源,利用市场上已有专业大数据方案,就能轻松解决技术及统计可能造成的问题。企业真正该做的是找出“想用数据解决什么问题?”,再以此方向搜集整合关键数据,而非一股脑的只想搜集“大量”数据。
阿里巴巴唯一大数据应用合作伙伴─MIGO功典信息为B2C平台“天猫商城”中的商家,打造大数据营销应用程序“标签智库”,即是用数据解决天猫商家投入庞大广告费,投资报酬率却过低的问题。“标签智库”将所有阿里巴巴会员定义人群标签,24小时动态更新运算,并分析个别商家所属消费族群形态,天猫商家通过使用“标签智库”,挖掘出与自家顾客消费习惯相仿的阿里巴巴会员,精准投放广告,不但减少不必要的广告费用,更提升广告的转换率较以往高达2~4倍。
各位看官,看到这儿,你认为他们花了很多时间、金钱和投资才达成吗?事实上,他们所做的仅仅是确立要解决的问题,并且即刻开始着手进行。
大数据营销不会消失,拿着旧地图,永远都找不到新大陆。因此,不管如何,没有数据的企业,就从想解决的问题开始搜集关键数据;拥有数据的企业,要避免过多不必要的技术成本支出,就如同你开始使用POS、ERP系统一样,找到合适的数据软件,开启你的新地图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23