京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据应用过程中,三大难题未解_数据分析师考试
近年来,大数据这个词成为互联网领域关注度最高的词汇,时至今日,大数据已经不再是IT圈的“专利”了,从去年的春晚,到刚刚过去的两会,都能见到它的身影,但实际上春晚与两会的数据都只能叫做小数据,它与真正的大数据还相差甚远。即便如此,数据所产生的价值已经被人们所认知。
就大数据来说,它的发展可以分成三个阶段,第一个阶段是组织内部的数据,这些数据通常都是结构化的数据,我们一般将这些数据进行分类、排序等操作,将相同类型的数据进行对比、分析、挖掘,总而言之基本上都是统计工作。到了第二阶段,数据的范围扩大到行业内,各种各样的应用数据出现,数据量大规模增长,尤其是非结构化数据的出现。典型的像视频、图片这一类的数据,在这一阶段的特点就是非结构化和结构化数据并存,且数据量巨大,要对这些数据进行分析是我们目前现阶段所处在的状态。
第三阶段则是未来大数据发展的理想化状态,首先它一定是跨行业的,且数据的范围是整个社会。通过对这些数据进行分析加以使用,将直接改变我们的生活方式,这也是现在很多企业所设想的未来交通、医疗、教育等领域的发展方向。
大数据太大不敢用
第三个阶段是我们所憧憬的,但在我们所处的第二阶段面对的更多是问题。其中的一个问题就是“大”。大数据给人最直观的感受就是大,它所带来的问题不仅仅是存储,更多的是庞大的数据没办法使用,以交通为例,从2001年开始在北京的主干道上都增设了一些卡口设备,到了今天基本上大街小巷都能看到。
这些设备每天所拍摄的视频及照片产生的数据量是惊人的,仅照片每天就能产生2千万张,而解决这些数据的存储只是最基本的任务,我们更需要的是使用这些数据。例如对套牌车辆的检查,对嫌疑车辆的监控,当你想要使用这些数据的时候,传统的数据库以及系统架构,放进这么庞大的数据,是根本跑不动的。这一问题导致很多企业对大数据望而却步。
大数据太难不会用
说到大数据的使用,自然离不开Hadoop,Hadoop本身提供了分布式系统中两个最重要的东西:分布式存储(HDFS)和分布式计算(Mapreduce)。这两者解决了处理大数据面临的计算和存储问题,但更为重要的是,为开发大数据应用开辟了道路。
Hadoop是目前解决大数据问题最流行的一种方式,但其仍然有不成熟的地方,曾作为雅虎云计算以及Facebook软件工程师的Jonathan Gray就表示:“Hadoop实施难度大,且复杂,如果不解决技术复杂性问题,Hadoop将被自己终结。”正是由于这样的原因,Gray创办了自己的公司——Continuuity,这家公司的目标就是在Hadoop和Hbase基础上创建一个抽象层,屏蔽掉Hadoop底层技术的复杂性。由此可见想要用好大数据又是一大考验。
大数据太贵用不起
Hadoop的特点就是让你可以使用廉价的x86设备来完成大数据的业务,但事实上如果你真想要用它来完成某些商业任务你还得是个“土豪”。在国外那些使用大数据的成功案例里,亚马逊曾给出过这样一组数字,NASA需要为45天的数据存储服务支付超过100万美元。像Quantcast这样的数字广告公司,同样也是花费了巨额的资金用在Hadoop技术上,来根据自己的需求定制系统。从上面两个案例来看用于商业用途的大数据现阶段还是很费钱的,随着大数据软件环境逐渐成熟,开发工具增多,价格在未来会逐渐降低。
从上面罗列的这三点困难,其实并不是要给大数据泼冷水,而是想说大数据想要淘金并不简单,首先在做大数据之前,好好盘点一下自己拥有的资源,不仅仅是数据资源,还包括知识与技能。确定了自己的能力之后,选择一个能够发挥你现有资源最大价值的项目。如果你需要帮手,应先考虑商业顾问,再考虑技术人才。为了解答一个生意上的困惑花下的钱,叫作投资,而把钱投到一个拥有特殊技能的IT人才身上,那就叫沉没成本。当你有了这些之后,选择更灵活且可扩展的工具,为以后的扩充打好基础。更重要的是——从小规模做起。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18