
大数据应用过程中,三大难题未解_数据分析师考试
近年来,大数据这个词成为互联网领域关注度最高的词汇,时至今日,大数据已经不再是IT圈的“专利”了,从去年的春晚,到刚刚过去的两会,都能见到它的身影,但实际上春晚与两会的数据都只能叫做小数据,它与真正的大数据还相差甚远。即便如此,数据所产生的价值已经被人们所认知。
就大数据来说,它的发展可以分成三个阶段,第一个阶段是组织内部的数据,这些数据通常都是结构化的数据,我们一般将这些数据进行分类、排序等操作,将相同类型的数据进行对比、分析、挖掘,总而言之基本上都是统计工作。到了第二阶段,数据的范围扩大到行业内,各种各样的应用数据出现,数据量大规模增长,尤其是非结构化数据的出现。典型的像视频、图片这一类的数据,在这一阶段的特点就是非结构化和结构化数据并存,且数据量巨大,要对这些数据进行分析是我们目前现阶段所处在的状态。
第三阶段则是未来大数据发展的理想化状态,首先它一定是跨行业的,且数据的范围是整个社会。通过对这些数据进行分析加以使用,将直接改变我们的生活方式,这也是现在很多企业所设想的未来交通、医疗、教育等领域的发展方向。
大数据太大不敢用
第三个阶段是我们所憧憬的,但在我们所处的第二阶段面对的更多是问题。其中的一个问题就是“大”。大数据给人最直观的感受就是大,它所带来的问题不仅仅是存储,更多的是庞大的数据没办法使用,以交通为例,从2001年开始在北京的主干道上都增设了一些卡口设备,到了今天基本上大街小巷都能看到。
这些设备每天所拍摄的视频及照片产生的数据量是惊人的,仅照片每天就能产生2千万张,而解决这些数据的存储只是最基本的任务,我们更需要的是使用这些数据。例如对套牌车辆的检查,对嫌疑车辆的监控,当你想要使用这些数据的时候,传统的数据库以及系统架构,放进这么庞大的数据,是根本跑不动的。这一问题导致很多企业对大数据望而却步。
大数据太难不会用
说到大数据的使用,自然离不开Hadoop,Hadoop本身提供了分布式系统中两个最重要的东西:分布式存储(HDFS)和分布式计算(Mapreduce)。这两者解决了处理大数据面临的计算和存储问题,但更为重要的是,为开发大数据应用开辟了道路。
Hadoop是目前解决大数据问题最流行的一种方式,但其仍然有不成熟的地方,曾作为雅虎云计算以及Facebook软件工程师的Jonathan Gray就表示:“Hadoop实施难度大,且复杂,如果不解决技术复杂性问题,Hadoop将被自己终结。”正是由于这样的原因,Gray创办了自己的公司——Continuuity,这家公司的目标就是在Hadoop和Hbase基础上创建一个抽象层,屏蔽掉Hadoop底层技术的复杂性。由此可见想要用好大数据又是一大考验。
大数据太贵用不起
Hadoop的特点就是让你可以使用廉价的x86设备来完成大数据的业务,但事实上如果你真想要用它来完成某些商业任务你还得是个“土豪”。在国外那些使用大数据的成功案例里,亚马逊曾给出过这样一组数字,NASA需要为45天的数据存储服务支付超过100万美元。像Quantcast这样的数字广告公司,同样也是花费了巨额的资金用在Hadoop技术上,来根据自己的需求定制系统。从上面两个案例来看用于商业用途的大数据现阶段还是很费钱的,随着大数据软件环境逐渐成熟,开发工具增多,价格在未来会逐渐降低。
从上面罗列的这三点困难,其实并不是要给大数据泼冷水,而是想说大数据想要淘金并不简单,首先在做大数据之前,好好盘点一下自己拥有的资源,不仅仅是数据资源,还包括知识与技能。确定了自己的能力之后,选择一个能够发挥你现有资源最大价值的项目。如果你需要帮手,应先考虑商业顾问,再考虑技术人才。为了解答一个生意上的困惑花下的钱,叫作投资,而把钱投到一个拥有特殊技能的IT人才身上,那就叫沉没成本。当你有了这些之后,选择更灵活且可扩展的工具,为以后的扩充打好基础。更重要的是——从小规模做起。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17