
大数据应用过程中,三大难题未解_数据分析师考试
近年来,大数据这个词成为互联网领域关注度最高的词汇,时至今日,大数据已经不再是IT圈的“专利”了,从去年的春晚,到刚刚过去的两会,都能见到它的身影,但实际上春晚与两会的数据都只能叫做小数据,它与真正的大数据还相差甚远。即便如此,数据所产生的价值已经被人们所认知。
就大数据来说,它的发展可以分成三个阶段,第一个阶段是组织内部的数据,这些数据通常都是结构化的数据,我们一般将这些数据进行分类、排序等操作,将相同类型的数据进行对比、分析、挖掘,总而言之基本上都是统计工作。到了第二阶段,数据的范围扩大到行业内,各种各样的应用数据出现,数据量大规模增长,尤其是非结构化数据的出现。典型的像视频、图片这一类的数据,在这一阶段的特点就是非结构化和结构化数据并存,且数据量巨大,要对这些数据进行分析是我们目前现阶段所处在的状态。
第三阶段则是未来大数据发展的理想化状态,首先它一定是跨行业的,且数据的范围是整个社会。通过对这些数据进行分析加以使用,将直接改变我们的生活方式,这也是现在很多企业所设想的未来交通、医疗、教育等领域的发展方向。
大数据太大不敢用
第三个阶段是我们所憧憬的,但在我们所处的第二阶段面对的更多是问题。其中的一个问题就是“大”。大数据给人最直观的感受就是大,它所带来的问题不仅仅是存储,更多的是庞大的数据没办法使用,以交通为例,从2001年开始在北京的主干道上都增设了一些卡口设备,到了今天基本上大街小巷都能看到。
这些设备每天所拍摄的视频及照片产生的数据量是惊人的,仅照片每天就能产生2千万张,而解决这些数据的存储只是最基本的任务,我们更需要的是使用这些数据。例如对套牌车辆的检查,对嫌疑车辆的监控,当你想要使用这些数据的时候,传统的数据库以及系统架构,放进这么庞大的数据,是根本跑不动的。这一问题导致很多企业对大数据望而却步。
大数据太难不会用
说到大数据的使用,自然离不开Hadoop,Hadoop本身提供了分布式系统中两个最重要的东西:分布式存储(HDFS)和分布式计算(Mapreduce)。这两者解决了处理大数据面临的计算和存储问题,但更为重要的是,为开发大数据应用开辟了道路。
Hadoop是目前解决大数据问题最流行的一种方式,但其仍然有不成熟的地方,曾作为雅虎云计算以及Facebook软件工程师的Jonathan Gray就表示:“Hadoop实施难度大,且复杂,如果不解决技术复杂性问题,Hadoop将被自己终结。”正是由于这样的原因,Gray创办了自己的公司——Continuuity,这家公司的目标就是在Hadoop和Hbase基础上创建一个抽象层,屏蔽掉Hadoop底层技术的复杂性。由此可见想要用好大数据又是一大考验。
大数据太贵用不起
Hadoop的特点就是让你可以使用廉价的x86设备来完成大数据的业务,但事实上如果你真想要用它来完成某些商业任务你还得是个“土豪”。在国外那些使用大数据的成功案例里,亚马逊曾给出过这样一组数字,NASA需要为45天的数据存储服务支付超过100万美元。像Quantcast这样的数字广告公司,同样也是花费了巨额的资金用在Hadoop技术上,来根据自己的需求定制系统。从上面两个案例来看用于商业用途的大数据现阶段还是很费钱的,随着大数据软件环境逐渐成熟,开发工具增多,价格在未来会逐渐降低。
从上面罗列的这三点困难,其实并不是要给大数据泼冷水,而是想说大数据想要淘金并不简单,首先在做大数据之前,好好盘点一下自己拥有的资源,不仅仅是数据资源,还包括知识与技能。确定了自己的能力之后,选择一个能够发挥你现有资源最大价值的项目。如果你需要帮手,应先考虑商业顾问,再考虑技术人才。为了解答一个生意上的困惑花下的钱,叫作投资,而把钱投到一个拥有特殊技能的IT人才身上,那就叫沉没成本。当你有了这些之后,选择更灵活且可扩展的工具,为以后的扩充打好基础。更重要的是——从小规模做起。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18