
大数据颠覆医疗,或许并不遥远_数据分析师考试
如果一个医生还在抱怨病人得了“搜索病”(指看病前习惯先上网查查自己可能得了什么病),那么这个医生大概已经落伍了。基于大数据在医疗领域的深度应用,美国斯坦福大学医学院一群富有创新精神的医学专家正和硅谷的医疗产业专家合作,推进一个最新的科研项目——“和你一样的病人”,通过这个智能系统,病人有望自查疾病,这也减少了医生因经验累积有限而导致的误诊或漏诊。这个系统有望成为医生的好帮手,也可能颠覆现有的医疗模式。
这是斯坦福大学医学院院长劳埃德·米诺在昨天的第九届21世纪中美医学论坛新闻发布会上向记者透露的信息。据悉,本次论坛将于10月14日-16日在斯坦福大学医学院召开,它由斯坦福大学、美国萨尔克生物研究所、上海瑞金医院共同主办,届时包括美国“四院院士”ShuChien教授、美国约翰霍普金斯大学前任校长William Brody教授、中国工程院院士王振义教授、世界卫生组织前副总干事胡庆澧教授、中国工程院院士陈赛娟教授等多位中美医学专家,将共同探讨当下医学界最热门的一个话题——“大数据时代背景下的医疗发展趋势”。
计算机筛选最优治疗方案
信息化已逐渐深入到医疗卫生的各个领域,成为医疗卫生事业发展的重要引擎,但由于医疗是高度专业化的领域,此前大多数信息化包括所谓“互联网+”与医疗的合作,依然是以医疗为核心,互联网只是服务于医疗的工具,比如,在线预约、在线挂号等。上海交大医学院副院长陈红专称,当下我们需要思考如何创新应用互联网,以及挖掘出海量数据的真正应用,而不仅仅是积累数据。
在斯坦福大学医学院,已有令人“脑洞大开”的科研进展。医生们开发的这个名为“和你一样的病人”的系统里,积累了上百万条药物、治疗方案、病例信息等数据,登录者键入身体状况、年龄、不适部位等,系统就会给出一个完全个性化的诊断结果以及理想的治疗方案。
“这种系统筛选出的治疗方案,可能比医生的方案效果更好,能让更多病人获得真正属于他们的最优治疗。因为我们都知道,医生的治疗水平很大部分来自于医学积累,也就是经验,但这种积累不论是30年还是50年,依然是有限的,它一定没有拥有全病人就医数据的电脑系统见多识广。”劳埃德·米诺对记者说。
反思传统“一对一”就医模式
事实上,促成劳埃德和伙伴们开发这个系统的机缘,是对传统就医模式的反思。
那是在1998年,劳埃德和同事在全世界首次报道了一种罕见病——“上半规管裂损症候群”。这种疾病的患者会出现眩晕、对声音异常敏感等症状。这本是一次很普通的学术发现,但令劳埃德意外的是,当他们发表了论文后,世界上许多国家的人开始上网搜索这个病的信息,并输入自己的信息,一批多年来找不到病因或在其他科室苦苦试验治疗方案的病人终于确诊。比如,英国就报道过一名女子罹患这种疾病,不仅能听见自己的心跳声、大脑搅动声,连吃颗苹果对她来说都是不可能的任务,因为她轻轻一咬,就是一阵震耳欲聋。
通过互联网找到“和你一样的病人”,这个启示让劳埃德和斯坦福医学院的同仁们开始开发这款全新的系统。
基于大数据应用,未来的看病模式很可能不再是现在这样与医生“一对一”。在哈佛大学医学院,已有医生尝试给乳腺癌患者这样看病:通过系统筛查全美乳腺癌患者病历,并挑出和具体患者相同或相似的年龄、生活环境、突变基因等,最终挑选出一个生存期、生活质量最高的治疗方案提供给患者。这是目前医生寻求“外脑”帮助的有效途径。
深度开发大数据预测疾病
此外,未来的医疗数据收集也将不再局限于诊室。瑞金医院副院长宁光教授以糖尿病为例介绍,借助可穿戴设备的开发,谷歌眼镜血糖监测、家庭床上血糖监测与数据远程传输等应用已经在小范围应用。“通过疾病管理,进而深度开发这些大数据,提取有价值的信息,有望开启医疗产业的新黄金时代。”宁光说。
可以畅想的是,医疗大数据带给人们的将不仅仅是更优的诊断与治疗计划,而是更优的生活方式。劳埃德·米诺说,通过医疗大数据的挖掘和筛选,还能前移到发现何种生活方式可能是更有利的,从而给政府、医保政策制定者、医院以及大众更好的生活方式指导。“那就是预防甚至预测疾病的范畴,我们已在和谷歌、苹果公司合作,也将与更多中国科学家合作。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08