京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据入场 互联网金融摆脱草莽_数据分析师考试
互联网金融发展至今,坏账一直是其挥之不去的阴影,2014年,全国P2P问题平台达275家,同比增长260%;行业平均坏账率8%,为银行的8倍。坏账率过高已经成为整个互联网金融行业发展的最大障碍。铁哥此前接触过各地不同形式的互联网金融平台,深感这是一个鱼龙混杂亟需完全科学化改造的行业。甚至部分互联网金融平台是与黑社会相伴的一半魔鬼一半天使的人格分裂型平台。
表面P2P暗里黑社会
部分互联网金融公司做P2P业务,表面看是完全互联网化的操作方式,用户线上注册提交信息以及融资需求,认定融资成本,便可较为便捷地获得资金。
但其中问题在于,相当部分的用户由于诚信度以及履约能力较差,被银行业拒之门外之后转投互联网金融平台,而多数互联网金融平台由于缺乏征信体系以及相关数据支持,无形中加大了平台的坏账风险。
当用户产生履约难问题之后,一些平台会将债务转移至其关联公司,于是用户与平台的债务关系便成为用户与关联公司的债务关系,由于用户欠款已由关联金融公司垫付也无形中拉低了互联网金融平台的坏账率。如果用户继续履约难,一些关联公司便要使用社会力量——黑社会前来追缴。
由于黑社会是由关联公司所找,互联网金融平台无太大责任,可以继续以互联网思维为借口站在风口。但其中难以回避的事实为平台方与黑社会的关系是你中有我的。而即便有社会催债力量协助,互联网金融平台也难以摆脱坏账噩梦,社会力量多在某地区有影响力,用户跑路坏账在所难免。
相当部分P2P平台由于缺乏相关数据支持,无法事先甄别用户,使得坏账根本无法避免,而社会催债力量又将整个行业拉低至极其草莽阶段,这都是不利于行业健康有序发展的。
互联网金融重点在征信数据
互联网金融行业要真正规避风险,仅靠黑社会是完全不行的,铁哥以为利用大数据的征信平台才可真正规避风险。7月10日,在玖富主办的互联网金融创业大赛杭州赛区,玖富以及芝麻信用的专家及管理人员对互联网金融的征信问题表达相当深刻的见解。而铁哥根据现场信息以及自身对行业的观察,认为目前互联网金融征信主要有以下三方面:
其一,企业自建征信标准
蚂蚁金服旗下的芝麻信用以支付宝和阿里电商交易体系为依托,结合购物、支付、以及相关数据,自建征信体系。由于信用体系将伴随用户一生,信用指数较高的用户可获得签证等方面的便利,用户出于自己未来利益考虑也不会轻易违约。
其二,企业参考全网数据严控金融风险
玖富作为国内领先的互联网金融集团,一直在研究大数据风控和风险评估。旗下的闪银Wecash便是基于用户的社交大数据进行的风险评估,只要用户有网络社交平台账号,即可在移动端进行闪电评估,出示具体分数后将很快拿到授信额度。
随着移动互联网兴起,社交平台可包含用户交际圈、消费习惯等维度信息,这都是综合评判用户履约能力的重要指标。
其三,强强结合
不久前玖富宣布与芝麻信用展开信用合作,双方将在芝麻分、反欺诈、风险名单等业务上展开深度合作。芝麻信用将丰富玖富对借款人的评估维度,为玖富移动金融业务筛选出更加优质的客户,进而提高整个平台的风控水准;而玖富客户的履约行为也将对个人的“芝麻分”产生影响,并从长远推动中国基础征信体系的建设。
如果一切顺利,双方的征信体系将会成为国内最大最权威的金融征信数据中心。
互联网金融行业如众多新兴行业一样,也是经历了草创阶段之后才逐步进入科学化管理阶段。而铁哥以为在科学化改造过程中,将会有一大批缺乏大数据采集技术和意识的平台走向灭亡,也会有一大批沉迷过往草莽手段的平台逐渐被科学化平台所淘汰。而曾经将互联网金融平台视为大客户的社会人士业务也将逐渐萎缩。在此,铁哥有必要提醒那些体量不大但认为也可通过大数据做征信体系的平台,不要对此抱太大幻想,由于体量较小,用户量小,而缺乏基础量的数据支撑下的所谓大数据,是无法建立模型进行数据分析的,即便草草建模数据真实性也难以保证。其规避风险能力还不见得有黑社会催缴强。
当然一些如玖富这般有数据技术、体量以及用户支撑的互联网金融平台将成为科学化改造的最大受益者,互联网金融行业也才真正进入正常的互联网发展轨道中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26