京公网安备 11010802034615号
经营许可证编号:京B2-20210330
相关关系并不意味着因果关系 大数据应避免大混乱
当今时代,大数据泛滥、数据挖掘工具种类繁多,玩弄图表游戏已经变得不能再容易,管理者需要火眼金睛,秒杀数据间的虚假关系!
举个例子,随机选取统计学上相关的两组数据,Y轴表示数据。
截取Y轴,让两条线接近。看,订阅HBR增加了WidgetCo公司的收入。
是不是感觉被忽悠了呢?!警惕虚假相关,一起新技能get√
我们都知道“相关关系并不意味着因果关系”,但当我们看到两条线朝同样的方向倾斜,柱状图中数值同时上升,或者数据点在散点图上聚集在一起时,数据简直在请求我们找出其中的逻辑,我们也甚至想要相信其中存在某种逻辑。
然而,统计学原则要求我们不能做这个逻辑跳跃。有些图表利用视觉小把戏,企图证明事物间存在密切相关性。哈佛法学院法学博士生、《虚假相关》(Spurious Correlations)一书作者泰勒.维根(Tyler Vigen),在他的网站上展示了一些荒唐可笑的“相关性”例子,比如美国人造黄油的人均消耗量和缅因州离婚率。
1 荒谬性
泰勒维根制作网站就是为了从容量较大的数据组中,找到并描述出数据间荒谬的相关性。以下是三个例子:
2 严重性
我们能够轻易发现并揭穿荒谬的例子,但当管理者碰到人为设计却看似合理的图表该如何做呢?
以下是三类需要留意的把戏:
(1)苹果和橘子 比较不同的变量
表示不同数值的两条曲线可能相似,但实际上不应放在一起比较。
当两个数值看似相关但实际上无关时,这种曲线图展示方式极其有害。所以最好用不同的表格表示不同的数值。
(2)扭曲坐标轴 调整数值范围从而比较数据(图表中K代表1000)
即使两条Y 轴表示的数据类型相同,改变数值范围也能改变曲线走势,进而指示虚假相关性。
左图中,表示RetailCo 公司每月收入的两条Y 轴,数值范围和变化比例都不同。去除第二条Y 轴后显示了图表是如何被扭曲的。
(3)如果-那么 暗示不存在的因果关系
将不相关的数据绘制在一张图表中,让它看起来像一个变量变化,会引发另一个变量发生变化。
我们可以根据左图来做一个推断——Pandora(Pandora 是美国最流行的提供在线音乐服务的软件——译者注)净亏损越少,越多音乐作品受到版权保护——而实际上这只是巧合,并不存在这样的因果关系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06