京公网安备 11010802034615号
经营许可证编号:京B2-20210330
运营商的大数据问题出在哪儿_数据分析师考试
大数据已经从概念阶段上升到了实际使用阶段,越来越多的企业在通过大数据进行产品开发和营销指导,而通信运营商也开始对手里握着的金矿感兴趣。不过,就如同以前很多业务开发一样,运营商掌握资源不假,但能否把资源变成产品却是未知数。在大数据应用中也是一样,目前运营商的进展仍然不佳。
毫无疑问,运营商手中的大数据无与伦比,甚至比互联网巨头们还要多。只是,要想把这些数据利用起来,却不如互联网公司容易。运营商的大数据问题出在哪儿呢?
数据积累时间长
但质量不佳
与互联网公司相比,运营商手中的数据更具有普遍性,甚至几乎囊括了所有的社会个体。可是由于运营商多年来经营业务相对集中,数据主要与通信消费行为领域相关,数据的范围相对较窄,在使用上受限很大。此外,运营商在开始积累数据的时候眼光就不够长远,因为数据数量过大,存储成本过高,运营商曾经处理掉很多现在看来非常宝贵的数据,这些都不可能再生。
在数据结构上,运营商原来存储数据主要用来作为向用户收钱的证据,对于与收钱关系不大的项目往往很少留存,这样就造成了很多数据缺陷,而这些缺失的数据对于大数据应用看起来更重要。
可以这样讲,阿里巴巴早就想好用数据来赚钱,所以处处留心收集和积累数据,当时机成熟的时候就会推出相应的数据产品。而运营商原来只想着用数据来算钱,到了需要用数据挣钱的时候就发现自己原来丢掉了西瓜。
应用场景不够
缺乏业务突破点
运营商多年以卖卡收话费为生,与用户的接触主要是收取话费和做好服务,专业化非常强,对商业社会的各个方面了解不足,手中有数据也不知道应该用到哪些地方。
互联网公司早已经脱离原有的业务范畴,纷纷交叉跨界,在面向社会的方方面面布局业务,这也就产生了对相关数据的现实需求。比如,阿里巴巴开始要做好电商,就需要分析卖家和买家的行为数据,以便通过精确营销和广告等数据应用赚取收入。后来,为了堵住刷单、治理造假等行为漏洞,更是要通过数据分析来检测和治理,进入互联网金融领域之后,要进行信贷客户的信用评价和行业景气预测,电商大数据就更有了新用场。
与互联网公司全面布局不同,运营商的业务范围很窄,即便有些非通信业务,也几乎用不到通信行为数据等进行分析使用。所以,这些数据怎么用,自己首先都没有用处,也就难以发现在社会上的新应用前景和创新点,只能跟着互联网公司创新的步伐去模仿。
不会造势
缺乏应用的成功案例
很多人都知道,百度与央视在春节期间推出的春运迁徙大数据,通过形象的数据展示全国人民回家过年前后的交通情况和旅游状态。蚂蚁金服更是在今年提出建设中国信用日的概念,通过多个超市信用消费来获得了社会广泛关注。
这些活动看起来都具有公益性质,几乎不会有任何的收入。可是,正是通过类似的被大家普遍关注的社会事件,这些公司的大数据能力和产品得到了社会认可,为未来这些能力的变现提供了最好的社会启蒙教育。
曾经有一位运营商高管在央视节目中说,该通信公司在几年前就曾经通过大数据分析的方法为政府处置某地火车站滞留旅客问题发挥了关键性作用。但是,这些事件也仅仅停留在公司内部的功劳簿上,公司因为种种原因都不会对外公开,社会上根本就不知道运营商能通过大数据做到哪些服务,更谈不上有更深入的项目合作。
数据不统一
难以发挥整体性的作用
由于历史和现实的原因,运营商的数据还存在自身缺陷,这些缺陷严重制约了大数据的使用,在机制和体制解决之前,都很难有本质上的改变。
首先,运营商是分级管理的,集团公司、省公司、市公司、县公司,逐级展开,特别是在省公司层面,各地运营几乎独立,各地的支撑系统都不是来自一家供应商,数据结构存在差异,且很难统一。
其次,即便数据可以通过系统建设实现全景视图,但在分级管理平台分隔的情况下,大数据应用时依然很难整体操作。数据不是分割的,但人是分隔的,在解决一些全局性问题的时候就无能为力。
还有,作为运营商,首先考虑的问题不是如何利用数据,而是要保护数据的安全。保护数据安全是所有拥有数据的企业和单位义不容辞的责任,可互联网公司更具有使用数据的冲动,也更敢于探索数据使用新场景,而运营商却将安全置于过重的地位,甚至为此畏首畏尾,自然浪费了好多资源。实际上,只要使用得当,完全可以做到兼顾安全与使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21