
云端巨人和消费者数据之战_数据分析师考试
Apache Spark 在数据方面的贡献,是类似从拨号互联网到宽带之间的伟大跨越。
这种革命并不仅仅是关于应用启动速度加快,而更是消费者可能之前从来没有想象到的新型的应用程序,过去的管道太窄了,而且速率太慢,不足以支撑这些应用。
试着想一想实时的通讯,流式的媒体音乐或视频,多人游戏,以及其他要大量消耗带宽的应用。当问题变成将数据运送到需要的商人手里的时候,Spark 为我们带来了信息流通领域量子式的飞跃。
这个世界上有 90%的数据,都是在最近几年才创造出来的,所以数据创造方面的步伐只会加快而从不会减慢。毫无疑问,在数据历史上,经销商和顾客们都到达了一个关键时刻。
随着企业将他们的应用,以及其中附带的数据转移到云端,传统的企业数据分销商正面临着消失在尘埃当中的危险。就算他们不会彻底消亡,也只能变得苟延残喘。但是如果恐龙的兴衰教会了我们任何事情的话,那就是:一种物种的灭绝就是另外一种物种的发展时机。因此,请迎接云计算巨人的到来。
像是亚马逊,谷歌,微软和 IBM 这样的巨人,都渴望拥有云计算环境。企业可以在这个环境当中运营他们自己的应用,更重要的是,消费者们也会把数据存储在这里。这个链接就是关键,数据提供一种粘性,但是它跟随的是应用。接着,谁拥有云,谁就终将拥有消费者和他们的数据。
那么,Apache Spark ——这个由 IBM 这些公司大量应用,有可能会是接下来 10 年当中最重要的开源项目,将会为此有什么贡献呢?
就像在互联网带宽方面的量子式飞跃一样,有很多人认为 Spark 的实时处理性能,将会引燃与数据工作的新方式,提供持续刷新的数据,允许员工,合作伙伴和消费者参与其中。这更像是消费者们转向他们的电视或者其他媒体。
今天的移动设备是易于使用的,而且足够快,以至于可以交互进行工作。商业用户可以自行驾驭数据分析系统,寻求在他们的经营过程当中到底发生了什么的答案。端对端的数据流可以搬运数据,通过标准化规定数据的质量,以及通过观察生产全过程,让人们做出由数据驱动的更有自信的决策。
有一些云计算巨头将这种 Spark 相关的加速服务和一些公司的大量数据存储紧密联系,并且托管一些新的数据频道——他们将此看作保证客户品牌忠诚度的一种好方法,也定义了我们未来的工作手段。新的通过数据流来进行分享与合作的方式,将会是新企业的支柱。每一天,商业用户都可以处于信息的接收端,快速和轻松的进行意见整合,就像他们现在在宽带网络应用当中所做的那样。
就像有线电视和之前的那些工具一样,数据的质量——从数据制造系统到数据分发应用——会帮助我们将工作地点差异化。本质上说,高保真的数据将会区分服务之间的优劣:各种服务的加载速度,带给用户的商业利益,以及数据的可信度都会有区别。根据这些区别,商业用户们可以有更多自信采取行动。
为了创造企业对优质数据服务的依赖性,数据相关服务需要快速启动,其信息需要对每个人而言都方便获取。我们需要进一步解释 IBM“全面投入 Apache Spark”的承诺,而且需要弄明白为什么亚马逊、谷歌和微软这样的大品牌都在做同样的事情。他们让我们看到数据应用历史上的一个关键时刻,这将改变行业游戏规则,影响人们和数据共存的生活方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29