京公网安备 11010802034615号
经营许可证编号:京B2-20210330
云端巨人和消费者数据之战_数据分析师考试
Apache Spark 在数据方面的贡献,是类似从拨号互联网到宽带之间的伟大跨越。
这种革命并不仅仅是关于应用启动速度加快,而更是消费者可能之前从来没有想象到的新型的应用程序,过去的管道太窄了,而且速率太慢,不足以支撑这些应用。
试着想一想实时的通讯,流式的媒体音乐或视频,多人游戏,以及其他要大量消耗带宽的应用。当问题变成将数据运送到需要的商人手里的时候,Spark 为我们带来了信息流通领域量子式的飞跃。
这个世界上有 90%的数据,都是在最近几年才创造出来的,所以数据创造方面的步伐只会加快而从不会减慢。毫无疑问,在数据历史上,经销商和顾客们都到达了一个关键时刻。
随着企业将他们的应用,以及其中附带的数据转移到云端,传统的企业数据分销商正面临着消失在尘埃当中的危险。就算他们不会彻底消亡,也只能变得苟延残喘。但是如果恐龙的兴衰教会了我们任何事情的话,那就是:一种物种的灭绝就是另外一种物种的发展时机。因此,请迎接云计算巨人的到来。
像是亚马逊,谷歌,微软和 IBM 这样的巨人,都渴望拥有云计算环境。企业可以在这个环境当中运营他们自己的应用,更重要的是,消费者们也会把数据存储在这里。这个链接就是关键,数据提供一种粘性,但是它跟随的是应用。接着,谁拥有云,谁就终将拥有消费者和他们的数据。
那么,Apache Spark ——这个由 IBM 这些公司大量应用,有可能会是接下来 10 年当中最重要的开源项目,将会为此有什么贡献呢?
就像在互联网带宽方面的量子式飞跃一样,有很多人认为 Spark 的实时处理性能,将会引燃与数据工作的新方式,提供持续刷新的数据,允许员工,合作伙伴和消费者参与其中。这更像是消费者们转向他们的电视或者其他媒体。
今天的移动设备是易于使用的,而且足够快,以至于可以交互进行工作。商业用户可以自行驾驭数据分析系统,寻求在他们的经营过程当中到底发生了什么的答案。端对端的数据流可以搬运数据,通过标准化规定数据的质量,以及通过观察生产全过程,让人们做出由数据驱动的更有自信的决策。
有一些云计算巨头将这种 Spark 相关的加速服务和一些公司的大量数据存储紧密联系,并且托管一些新的数据频道——他们将此看作保证客户品牌忠诚度的一种好方法,也定义了我们未来的工作手段。新的通过数据流来进行分享与合作的方式,将会是新企业的支柱。每一天,商业用户都可以处于信息的接收端,快速和轻松的进行意见整合,就像他们现在在宽带网络应用当中所做的那样。
就像有线电视和之前的那些工具一样,数据的质量——从数据制造系统到数据分发应用——会帮助我们将工作地点差异化。本质上说,高保真的数据将会区分服务之间的优劣:各种服务的加载速度,带给用户的商业利益,以及数据的可信度都会有区别。根据这些区别,商业用户们可以有更多自信采取行动。
为了创造企业对优质数据服务的依赖性,数据相关服务需要快速启动,其信息需要对每个人而言都方便获取。我们需要进一步解释 IBM“全面投入 Apache Spark”的承诺,而且需要弄明白为什么亚马逊、谷歌和微软这样的大品牌都在做同样的事情。他们让我们看到数据应用历史上的一个关键时刻,这将改变行业游戏规则,影响人们和数据共存的生活方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08