
大数据分析的价值和意义:直抵事实的真相
企业都在努力获取和解读不同分析系统的数据,而每个系统又负责不同的数据和处理类型。企业都在试图提升数据分析的广度和深度,以便满足业务运营的需求。但是,他们的挑战在于,如何将各种全新的分析引擎、文件系统、存储技术、程序设计语言和数据类型完美地整合到统一、互联、互补的分析架构中。而由于各种不同的原因,过去企业在这方面的尝试都不成功。从大数据获取价值,企业必须创建一个架构来协调并行数据库的分析处理,而不是联合所有的服务器。
“Teradata QueryGrid是最灵活的解决方案,配备实现所有功能的创新型软件。得以轻松完成跨数据库分析处理”,Teradata天睿公司实验室(Teradata Labs)总裁 Scott Gnau 表示。“用户选择相应分析引擎和文件系统后,Teradata软件只要执行一条SQL查询,就能无缝整合不同系统的分析处理能力,无需移动数据。此外,Teradata还支持在单一负载中使用多个文件系统和分析引擎。” Hortonworks公司首席技术官Ari Zilka表示:“Teradata天睿公司开创性地将Hadoop以及Hcatalog与Aster SQL-H相结合,让客户能够访问Hadoop中储存的大量数据,直接运行高级分析功能。
如今,他们正进行更深层次的研发,将数据处理能力部署在Hadoop之中,运用Hortonwork公司Singer Intiative带来的Hive性能提升优势,以前所未有的规模和速度提供分析结果。” Teradata QueryGrid打破了业界传统,提供了无缝的自助式服务,用户只需在单一Teradata 数据库(Teradata Database)或者Teradata Aster 数据库查询,就能访问和分析各个系统的数据。Teradata QueryGrid采用分析引擎和文件系统,使用户专注于数据访问和分析,无需专用工具或IT人员介入。通过在数据的原有存储位置进行处理,最大限度避免了数据移动和复制。
Teradata Database 15数据库配以QueryGrid的性能,能够在开源Hadoop平台、Aster数据库及其他数据库中,为用户提供双向数据迁移及下推(pushdown)处理。查询可以从Teradata 数据库发起,在Hadoop、Aster数据库及其他数据库环境中获取、筛选和返还数据子集,并在Teradata数据库中进行再加工,通过这种分析能力整合Teradata 数据库与Hadoop数据库中的数据。 Teradata统一数据构架(Teradata Unified Data Architecture)整合Teradata 数据库、Teradata Aster大数据探索平台和Hadoop技术,让Teradata QueryGrid能够拓展和丰富Teradata及Aster的查询,从而为用户提供可靠的洞察力。
使用Teradata数据库及Teradata Aster大数据探索平台的优势,用户便可从Teradata QueryGrid双向数据迁移和下推分析处理中获益良多。Teradata天睿公司的愿景是创造出更成熟的大数据分析方案,连接分析引擎与文件系统,将用户的数据处理能力扩展至整个公司。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01