cda

数字化人才认证

首页 > 行业图谱 >

神经网络loss值很小,但实际预测结果差很大,有什么原因?

神经网络loss值很小,但实际预测结果差很大,有什么原因?
2023-04-03
神经网络是一种模拟人类神经系统运作的计算模型,可以完成很多复杂的任务,如图像识别、语音识别和自然语言处理等。在训练神经网络时,最重要的指标是损失函数(loss function),用于衡量模型预测结果与真实值之 ...

卷积神经网络可以没有池化层吗?

卷积神经网络可以没有池化层吗?
2023-03-31
卷积神经网络(Convolutional Neural Network,CNN)是一种常用的深度学习算法,广泛应用于计算机视觉和自然语言处理等领域。池化层(Pooling Layer)是CNN中常用的一种层次结构,可以降低数据的空间维度,提高模 ...
CRF和LSTM 模型在序列标注上的优劣?
2023-03-31
序列标注是一种重要的自然语言处理任务,通常用于实体识别、命名实体识别、分词、词性标注等。在序列标注中,CRF和LSTM是两种常用的模型,本文将比较它们在序列标注上的优劣。 一、CRF 条件随机场(CRF)是一种无向 ...

卷积神经网络训练时loss突然增大是什么原因?

卷积神经网络训练时loss突然增大是什么原因?
2023-03-30
卷积神经网络(CNN)是一种常用的深度学习模型,广泛应用于计算机视觉、自然语言处理和语音识别等领域。在训练CNN时,我们通常使用反向传播算法来更新网络参数,并通过监控损失函数的变化来评估模型的性能。在训练 ...
怎么理解TensorFlow中的Dense?
2023-03-29
在 TensorFlow 中,Dense 是一种常用的层类型,用于构建神经网络中的全连接层。它是一个密集连接的神经网络层,每个神经元与上一层的所有神经元相连。本文将从以下几个方面来解释 TensorFlow 中的 Dense 层。 神经 ...
深度学习与神经网络有什么区别?
2023-03-29
深度学习和神经网络是人工智能领域中的两个重要概念,它们在很多方面有着相似之处,但也存在一些区别。本文将从定义、结构、应用等方面来探讨深度学习与神经网络的区别。 定义 深度学习是一种基于人工神经网络的机 ...
TensorFlow 和keras有什么区别?
2023-03-28
TensorFlow和Keras都是机器学习领域中的流行框架。它们都被广泛用于深度学习任务,例如图像分类、自然语言处理和推荐系统等。虽然它们都有相似的目标,即使让机器学习更加容易和高效,但是它们之间确实存在一些区别 ...
tensorflow.js有哪些局限?
2023-03-28
TensorFlow.js是一个基于JavaScript的深度学习库,它可以在Web浏览器和Node.js环境中运行。虽然TensorFlow.js提供了一些独特的功能和优势,但也存在一些局限性。 性能方面的局限性 与传统的深度学习框架相比,Tens ...
数据分析师培育需要多久
2023-03-28
数据分析师是当今社会中备受欢迎的职业之一,他们的工作是帮助企业和组织做出更好的决策,提高效益并发掘价值。然而,要成为一名数据分析师并不是一件容易的事情,因为要想达到数据分析师的水平需要掌握复杂的数据 ...
数据分析师需要学多久?
2023-03-28
数据分析师是一个复杂而又充满活力的职业,他们的主要职责是利用数据分析技术和工具来挖掘数据中的信息,为企业提供决策支持。随着数字化转型的不断深入,数据分析师的需求也越来越大。然而,数据分析师的培训和学 ...
强化学习(RL)在NLP的应用前景如何?
2023-03-27
强化学习 (Reinforcement Learning, RL) 是机器学习中的一种重要分支,它通过让计算机与环境进行交互来学习策略,从而实现最优化决策。在自然语言处理 (Natural Language Processing, NLP) 领域,强化学习也有着广泛 ...
如何判断深度神经网络是否过拟合?
2023-03-27
深度神经网络是一种强大的机器学习工具,可以用于各种应用,包括图像识别、自然语言处理和推荐系统等。但是,当训练数据过少或模型过于复杂时,可能会导致过拟合问题。本文将介绍如何判断深度神经网络是否过拟合。 ...

神经网络最后一层需要激活函数吗?

神经网络最后一层需要激活函数吗?
2023-03-23
神经网络在深度学习领域中是一种非常重要的模型,它可以通过处理大量数据来实现各种任务,如图像识别、语音识别、自然语言处理等。每个神经网络都由多个层组成,其中最后一层通常被称为输出层。但是,许多人对于最 ...
MapReduce和Spark的区别是什么?
2023-03-23
MapReduce和Spark是两个广泛使用的分布式计算框架,用于处理大规模数据。虽然它们都可以在大数据集合上运行,但它们之间有一些关键区别。 MapReduce最初由Google开发,旨在通过分布式计算来处理大数据集。它将任务分 ...
LSTM里Embedding Layer的作用是什么?
2023-03-22
LSTM是一种经典的循环神经网络,已经广泛应用于自然语言处理、语音识别、图像生成等领域。在LSTM中,Embedding Layer(嵌入层)是非常重要的一部分,它可以将输入序列中的每个离散变量映射成一个连续向量,从而便于 ...
为什么很少拿神经网络来直接做滤波器呢?
2023-03-22
神经网络是一种强大的机器学习技术,可以用于各种任务,如图像分类、语音识别和自然语言处理等。在这些任务中,神经网络已经取得了很大的成功,但为什么很少使用神经网络来直接做滤波器呢?本文将提供一些可能的原因 ...
Transformer是否适合用于做非NLP领域的时间序列预测问题?
2023-03-22
Transformer是一种广泛应用于自然语言处理(NLP)领域的深度学习模型,其在机器翻译、情感分析等任务中取得了显著的成果。然而,随着深度学习技术的不断发展,越来越多的研究表明Transformer也可以应用于非NLP领域中 ...
神经网络能否代替决策树算法?
2023-03-22
神经网络和决策树算法是两种不同的机器学习模型,它们各自有着自己的优缺点。在选择使用何种模型时,需要根据具体情况进行考虑。本文将介绍神经网络和决策树算法,并探讨神经网络是否可以代替决策树算法。 首先,我 ...
哪位高手能解释一下卷积神经网络的卷积核?
2023-03-22
卷积神经网络是一种深度学习模型,其核心组成部分之一就是卷积层。在卷积层中,卷积核扮演着至关重要的角色,它是用于特征提取的基本操作单元。 卷积核是一个小矩阵,通常为正方形,其大小由用户定义。卷积核通过移 ...
卷积神经网络和深度神经网络的区别是什么?
2023-03-22
卷积神经网络(Convolutional Neural Network,CNN)和深度神经网络(Deep Neural Network,DNN)是两种常见的神经网络架构。它们有许多共同点,但在某些方面也有区别。 首先,卷积神经网络主要用于图像识别和计算机 ...

OK
客服在线
立即咨询