
自然语言处理(NLP)是人工智能领域中一个快速发展的分支,它提供了许多技术和方法来对自然语言进行处理。其中,词嵌入(word embedding)是NLP中最重要的技术之一,因为它允许将自然语言转换为计算机可以理解和处理的向量表示形式。
BERT(Bidirectional Encoder Representations from Transformers)是一种有监督的预训练模型,它使用了Transformer架构,并在大型语料库上进行了训练,可以用于各种自然语言处理任务,如文本分类、句子配对等。
BERT模型的输出包含多个层级,其中第一层是输入层,最后一层是输出层,而在中间的隐藏层中,每一个单词都被映射到一个低维度的向量空间中。这些向量就是所谓的BERT词嵌入。
提取BERT词嵌入非常简单,只需要将文本输入BERT模型中,并获取相应隐藏层的输出即可。具体步骤如下:
首先,我们需要安装相应的Python库,包括transformers和torch。可以使用以下命令来安装这些库:
!pip install transformers
!pip install torch
接下来,加载BERT模型并设置为评估模式,以保证Dropout和BatchNormalization层不会被激活。我们可以使用以下代码完成这一步骤:
from transformers import BertTokenizer, BertModel
# 加载BertTokenizer和BertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')
# 设置为评估模式
model.eval()
然后,我们需要将文本转换为BERT可接受的输入格式。具体来说,我们需要使用BertTokenizer对文本进行分词,并将结果转换为BERT的输入ID和Attention Mask张量。以下是一个示例代码:
text = "I love natural language processing."
tokens = tokenizer.tokenize(text)
input_ids = torch.tensor([tokenizer.convert_tokens_to_ids(tokens)])
attention_mask = torch.ones_like(input_ids)
最后,我们可以将输入张量传递给BERT模型并获取相应的隐藏层输出。具体来说,我们将输入ID和Attention Mask张量传递给BertModel,并获取相应的所有隐藏层输出。以下是一个示例代码:
with torch.no_grad():
outputs = model(input_ids, attention_mask=attention_mask)
hidden_states = outputs[2]
在此示例中,我们获取了BERT模型的所有隐藏层输出,可以根据需要选择其中任意一层作为词嵌入。
总之,BERT是一种非常强大的预训练模型,可以用于各种自然语言处理任务。它的词嵌入提取非常简单,只需要将文本输入BERT模型中,并获取相应隐藏层的输出即可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09