
卷积神经网络 (Convolutional Neural Networks, CNNs) 是一种广泛应用于图像识别、语音处理、自然语言处理等领域的深度学习模型。在使用CNNs进行分类或回归任务之前,通常需要对输入数据进行预处理。其中一个重要的预处理步骤就是数据归一化。
所谓数据归一化,就是将不同特征维度的数据缩放到相同的范围内,以便于模型在训练过程中更好地优化权重参数和偏置项。具体而言,数据归一化可以分为两种类型:线性归一化和非线性归一化。
线性归一化,也称为最小-最大规范化(Min-Max Normalization),是指将原始数据 $x$ 通过以下公式转换:
$$ hat{x}=frac{x-min(x)}{max(x)-min(x)} $$
其中 $hat{x}$ 表示归一化后的数据,$max(x)$ 和 $min(x)$ 分别表示原始数据中的最大值和最小值。这种方法能够将所有特征维度的数据映射到 [0,1] 的区间内。
非线性归一化则更加灵活,其目的是使得数据符合某种特定的概率分布,例如正态分布。其中最常见的方法是 Z-score 标准化,也称为标准差标准化(Standardization)。该方法通过将原始数据 $x$ 通过以下公式转换:
$$ hat{x}=frac{x-mu}{sigma} $$
其中 $hat{x}$ 表示归一化后的数据,$mu$ 和 $sigma$ 分别表示原始数据的均值和标准差。这种方法能够使得所有特征维度的数据符合均值为0、方差为1的正态分布。
对于CNNs模型而言,数据归一化非常重要。下面列举了三个主要原因:
加速模型收敛速度:如果输入数据没有经过归一化处理,不同特征之间的数值范围可能相差很大,导致训练时权重参数的更新速度不同,从而降低模型的收敛速度。
避免梯度消失或爆炸:在深度神经网络中,由于梯度传播的影响,某些层的输出值可能会变得非常大或者非常小,甚至产生梯度消失或爆炸的情况。通过归一化数据可以限制网络参数的范围,从而避免这种情况的发生。
提高模型泛化能力:通过归一化数据可以减少不同特征之间的依赖性,从而使得模型更容易捕获数据的共性特征,提高模型的泛化能力。
需要注意的是,在CNNs中进行归一化时,通常是在每个batch中对数据进行归一化处理。这种方法被称为批量归一化(Batch Normalization, BN),可以进一步提高模型的训练速度和准确率。
总之,数据归一化是卷积神经网络中非常重要的预处理步骤之一。通过归一化数据,我们可以加速模型收敛、避免梯度消失或爆炸、提高模型泛化能力等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10