cda

数字化人才认证

首页 > 行业图谱 >

【CDA干货】机器学习参数重要性分析:从参数类型到落地实践,优化模型性能的核心指南

【CDA干货】机器学习参数重要性分析:从参数类型到落地实践,优化模型性能的核心指南
2025-10-16
在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这些参数的微小调整都可能显著影响模型的预测精度、泛化能力甚至训练效率。但很多从业者 ...

CDA 数据分析师:数字化时代数据思维的践行者与价值转化者

CDA 数据分析师:数字化时代数据思维的践行者与价值转化者
2025-10-16
在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法,金融机构靠信贷数据降低坏账风险,零售门店靠客流数据调整货架布局。但并非拥有数据就 ...

【CDA干货】神经网络隐藏层层数怎么确定?从原理到实战的完整指南

【CDA干货】神经网络隐藏层层数怎么确定?从原理到实战的完整指南
2025-10-14
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据复杂规律);层数过多,又会导致 “过拟合”(记忆训练噪声)、训练效率低下、梯度消 ...

数据分析师必备技能体系:从工具到思维,构建数据驱动的核心竞争力

数据分析师必备技能体系:从工具到思维,构建数据驱动的核心竞争力
2025-10-14
在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分析结果转化为业务决策。但成为一名合格的数据分析师,绝非 “会用 Excel 做表”“会写 ...

CDA 数据分析师:以指标为锚,以体系为纲,筑牢数据驱动的决策基石

CDA 数据分析师:以指标为锚,以体系为纲,筑牢数据驱动的决策基石
2025-10-14
在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 “复购用户” 的定义不同(运营算 “30 天内复购”,产品算 “90 天内复购”);业务想 ...

CDA 数据分析师:以数据仓库体系为基,以 ETL 为刃,筑牢数据驱动的 “数据底座”

CDA 数据分析师:以数据仓库体系为基,以 ETL 为刃,筑牢数据驱动的 “数据底座”
2025-10-13
在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易系统、支付平台、物流系统里 —— 这些碎片化的数据无法直接支撑深度分析(如用户生命 ...

【CDA干货】序列模式挖掘:解码用户行为逻辑,驱动业务增长的核心技术

【CDA干货】序列模式挖掘:解码用户行为逻辑,驱动业务增长的核心技术
2025-10-11
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银行 APP 的 “登录→查询余额→转账”—— 都构成了带有时间顺序的 “行为序列”。这些 ...

CDA 数据分析师:精通数据分类,让数据从 “混乱仓库” 变 “有序宝库”

CDA 数据分析师:精通数据分类,让数据从 “混乱仓库” 变 “有序宝库”
2025-10-11
在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified Data Analyst)分析师每次取数都需 “翻箱倒柜”,不仅浪费 60% 的时间在找数据上,还 ...

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战
2025-10-09
在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 “量化错误”(计算预测值与真实值的差距),反向传播负责 “定位错误来源”(沿着神 ...

【CDA干货】正态 t 检验与符号秩检验的选择指南

【CDA干货】正态 t 检验与符号秩检验的选择指南
2025-10-09
本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确:何时必须用 t 检验,何时只能用符号秩检验,以及如何通过数据特征快速决策。 一、先 ...

CDA 数据分析师:用效应分解法,剖开时间序列的 “增长密码”

CDA 数据分析师:用效应分解法,剖开时间序列的 “增长密码”
2025-10-09
在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还是 “双 11 促销拉动”,或是 “新用户结构优化带来的增量”?若仅看时间序列的表面变 ...

【CDA干货】Pandas 选取特定值所在行:6 类核心方法与实战指南

【CDA干货】Pandas 选取特定值所在行:6 类核心方法与实战指南
2025-09-30
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之一 —— 无论是筛选 “性别为男的用户”“销售额超过 1000 的订单”,还是 “包含‘北 ...

【CDA干货】球面卷积神经网络(SCNN)

【CDA干货】球面卷积神经网络(SCNN)
2025-09-30
球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通过重构 “卷积核设计、数据采样、特征聚合” 的底层逻辑,让神经网络能够适配球面的非 ...

CDA 数据分析师:读懂时间序列,让历史数据成为业务预测的 “指南针”

CDA 数据分析师:读懂时间序列,让历史数据成为业务预测的 “指南针”
2025-09-30
在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股价波动趋势”,零售门店想确定 “明日库存该备多少”。这些问题的答案,藏在 “时间序 ...

【CDA干货】Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界

【CDA干货】Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界
2025-09-29
Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分类标签,通过数据自身的相似性将样本划分为若干组(聚类),广泛用于客户分群、产品归 ...

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南
2025-09-29
XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型,但传统决策树存在 “易过拟合、精度有限、对噪声敏感” 等缺陷。而 XGBoost(Extreme ...

CDA 数据分析师:精通标签加工方式,让数据标签从 “raw” 到 “ready”

CDA 数据分析师:精通标签加工方式,让数据标签从 “raw” 到 “ready”
2025-09-29
在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加工—— 即将分散的原始数据(如用户行为日志、订单记录)通过清洗、计算、建模等手段, ...

【CDA干货】Pandas quoting 详解:掌控文本文件读写中的引号规则,避免数据解析陷阱

【CDA干货】Pandas quoting 详解:掌控文本文件读写中的引号规则,避免数据解析陷阱
2025-09-28
在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京,朝阳”)、嵌套引号(如 “他说:"明天加班"”)时,若未正确配置引号处理规则,Pan ...

【CDA干货】Cox 模型时间依赖性检验:原理、方法与实战应用

【CDA干货】Cox 模型时间依赖性检验:原理、方法与实战应用
2025-09-26
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “时间 - 事件” 数据(如患者生存时间、设备故障时间)的核心工具。其核心假设 ——比 ...

【CDA干货】检测因子类型的影响程度大小:评估标准、实战案例与管控策略

【CDA干货】检测因子类型的影响程度大小:评估标准、实战案例与管控策略
2025-09-26
检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试),“检测因子” 是衡量检测目标(如水质、食品安全性、产品性能)是否达标的核心指标。 ...

OK
客服在线
立即咨询