cda

数字化人才认证

首页 > 行业图谱 >

数据质量如何影响分析结果?
2023-06-29
数据质量是指数据在存储、处理和使用的过程中所表现出的准确性、完整性、一致性、可靠性和及时性等方面的指标。在进行数据分析时,数据质量是非常重要的,因为它会直接影响到分析结果的准确性和可信度。下面将详细介 ...
如何评估数据质量和准确性?
2023-06-20
数据质量和准确性评估是数据管理和分析的关键步骤。这些过程可以帮助组织确定其数据是否可靠、适合用于特定目的。以下是一些常用的方法来评估数据质量和准确性。 数据审查:数据审查是对整个数据集进行全面审查的 ...
如何评估数据质量和可靠性?
2023-06-20
数据质量和可靠性的评估是任何数据分析或机器学习任务的重要组成部分。数据质量差的数据会产生误导性结果,而不可靠的数据则不能为决策制定提供充足的支持。本文将介绍如何评估数据质量和可靠性,包括以下几个方面: ...
如何评估和提升数据质量
2023-06-15
数据质量是数据分析、机器学习和人工智能等领域中至关重要的一个方面。良好的数据质量可以确保数据的准确性、完整性和一致性,从而提高数据分析的可靠性和效率。本文将介绍如何评估和提升数据质量。 评估数据质量 数 ...
如何评估和提高数据质量
2023-06-15
数据是现代社会的重要资源,而数据质量则直接影响了数据分析和决策的准确性和可靠性。因此,评估和提高数据质量变得至关重要。以下是一些关于如何评估和提高数据质量的建议。 评估数据质量 定义数据质量标准:在评 ...
分析师如何评估数据质量
2023-06-15
作为数据分析师,评估数据质量是非常重要的一项任务。因为如果数据质量不好,那么所得到的结论和决策就可能会受到很大的影响。下面将介绍如何评估数据质量并提高数据的准确性和可靠性。 审查数据源 首先,需要对数 ...
如何处理数据质量问题?
2023-06-15
数据质量问题是数据分析过程中最常见的挑战之一。如果数据质量不好,那么从这些数据中得出的结论就可能不准确,也无法支持可靠的商业决策。因此,正确处理数据质量问题对于任何企业或组织都至关重要。 以下是一些应 ...
哪些因素影响数据质量
2023-06-15
数据质量是一个重要的话题,因为它对于决策和分析的准确性至关重要。但是,保证数据质量并不容易,因为有许多因素可以影响数据的准确性和可靠性。以下是一些主要的因素: 数据来源:数据质量取决于其来源。如果数 ...

 数据质量 类岗位每天需要做什么?通过一个案例了解下

数据质量类岗位每天需要做什么?通过一个案例了解下
2022-01-21
CDA数据分析师 出品 编辑:JYD 大家好,我是曹鑫老师,今天要给大家分享的是数据质量类岗位。 下面我们截取一小段数据演示一个实际案例,帮您更好的了解这类岗位。 例如:某车企在全国各地有不同 ...
如何提高数据质量
2018-07-09
如何提高数据质量 大数据时代带来了海量、多样、非结构化的数据,我们得以进行更加广泛且深入的分析,但这必须建立在高质量的数据上才有意义。本期以企业级的视角,介绍数据质量的评价、提升与监控。 大数据 ...

【 数据质量 】--指标治理的三个步骤及必要条件

数据质量】--指标治理的三个步骤及必要条件
2018-04-30
【数据质量】--指标治理的三个步骤及必要条件 “同名同义”、“同义同名”、“异名异义”,三个词,即是指标治理的三个步骤。“由上推下,由小及大”是内在逻辑。在展开说明之前,我们先全盘阐述数据治理的范畴 ...

提高 数据质量 和业务分析水平的5个大数据源

提高数据质量和业务分析水平的5个大数据源
2017-12-04
提高数据质量和业务分析水平的5个大数据源 信息就是力量,特别是在电子商务领域。企业可以通过收集来自市场上不同数据源的数据,为业务提供有利信息,并节省成本。但是,在哪里可以找到可操作的免费的可靠信息 ...

大数据时代下,数据感知在 数据质量 管理系统中的应用

大数据时代下,数据感知在数据质量管理系统中的应用
2017-11-24
大数据时代下,数据感知在数据质量管理系统中的应用 关于数据质量管理,可能与大部分人没有太大的关系。虽然,市面上有很多的公司在进行数据的挖掘、分析方面业务的工作,但是关于数据质量管理方面的公司真的是屈 ...
数据质量的好坏决定数据挖掘项目的成败
2017-07-31
数据质量的好坏决定数据挖掘项目的成败 David Nettleton是《商业数据挖掘:为预测分析项目处理,分析和建模》一书的作者,他还是一位在数据分析处理方面有丰富经验的顾问和学术研究者。 Q:您认为, ...

【CDA干货】特征单变量筛选:从原理到实战,高效精简特征的核心方法

【CDA干货】特征单变量筛选:从原理到实战,高效精简特征的核心方法
2025-10-21
在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特征(如 “用户 ID”“无效时间戳”),既能降低后续建模的计算成本(如减少 50% 特征可 ...

CDA 数据分析师:数据采集方法实战指南 —— 筑牢数据分析的 “源头活水”

CDA 数据分析师:数据采集方法实战指南 —— 筑牢数据分析的 “源头活水”
2025-10-20
在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不合规,后续的清洗、建模、分析都将沦为 “无米之炊”。CDA(Certified Data Analyst) ...

【CDA干货】数据清洗如何守住真实性?从方法到落地的保真指南

【CDA干货】数据清洗如何守住真实性?从方法到落地的保真指南
2025-10-17
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含义。现实中,很多数据清洗操作却走向 “失真陷阱”:比如为了 “数据整齐” 删除真实的 ...

CDA 数据分析师:以量化策略分析框架为刃,破解企业决策的 “数据密码”

CDA 数据分析师:以量化策略分析框架为刃,破解企业决策的 “数据密码”
2025-10-17
在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍板” 做促销可能导致成本失控,零售靠 “店长经验” 备货可能造成库存积压。而量化策 ...

数据分析师必备技能体系:从工具到思维,构建数据驱动的核心竞争力

数据分析师必备技能体系:从工具到思维,构建数据驱动的核心竞争力
2025-10-14
在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分析结果转化为业务决策。但成为一名合格的数据分析师,绝非 “会用 Excel 做表”“会写 ...

CDA 数据分析师:以数据仓库体系为基,以 ETL 为刃,筑牢数据驱动的 “数据底座”

CDA 数据分析师:以数据仓库体系为基,以 ETL 为刃,筑牢数据驱动的 “数据底座”
2025-10-13
在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易系统、支付平台、物流系统里 —— 这些碎片化的数据无法直接支撑深度分析(如用户生命 ...

OK
客服在线
立即咨询