cda

数字化人才认证

首页 > 行业图谱 >

【CDA干货】用模型挖掘数据中的隐性特征:方法、案例与落地指南

【CDA干货】用模型挖掘数据中的隐性特征:方法、案例与落地指南
2025-11-07
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “隐性特征”—— 它们隐藏在数据关联、行为模式或语义背后,比如 “用户潜在消费偏好” ...

【CDA干货】机器学习分类模型:从原理到实战的完整指南

【CDA干货】机器学习分类模型:从原理到实战的完整指南
2025-11-06
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 / 恶性)”,从 “客户流失预测(流失 / 留存)” 到 “图像分类(猫 / 狗 / 汽车)” ...

【CDA干货】卷积层之后:归一化与激活函数的取舍之道

【CDA干货】卷积层之后:归一化与激活函数的取舍之道
2025-10-24
在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都会面临的基础决策。这三者的组合并非随意搭配,而是深刻影响模型训练稳定性、收敛速度 ...

【CDA干货】机器学习参数重要性分析:从参数类型到落地实践,优化模型性能的核心指南

【CDA干货】机器学习参数重要性分析:从参数类型到落地实践,优化模型性能的核心指南
2025-10-16
在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这些参数的微小调整都可能显著影响模型的预测精度、泛化能力甚至训练效率。但很多从业者 ...

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战
2025-10-09
在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 “量化错误”(计算预测值与真实值的差距),反向传播负责 “定位错误来源”(沿着神 ...

【CDA干货】人工智能重塑工程质量检测:核心应用、技术路径与实践案例

【CDA干货】人工智能重塑工程质量检测:核心应用、技术路径与实践案例
2025-09-24
人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一道防线”。传统检测模式依赖人工肉眼观察、手持设备采样、破坏性试验,存在效率低(如 ...

【CDA干货】训练与验证损失骤升:机器学习训练中的异常诊断与解决方案

【CDA干货】训练与验证损失骤升:机器学习训练中的异常诊断与解决方案
2025-09-19
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指标 —— 理想情况下,训练损失与验证损失会随迭代轮次(Epoch)稳步下降,最终趋于平 ...

【CDA干货】R 语言:数据科学与科研领域的核心工具及优势解析

【CDA干货】R 语言:数据科学与科研领域的核心工具及优势解析
2025-09-08
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T 检验分析)、数据分析师挖掘商业规律,还是学生学习统计方法,都需要一款兼具 “专业性 ...

【CDA干货】随机森林算法的核心特点:原理、优势与应用解析

【CDA干货】随机森林算法的核心特点:原理、优势与应用解析
2025-09-05
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning)中 Bagging 算法的经典代表,凭借对单决策树缺陷的优化,成为分类、回归任务中的 “万 ...

企业名称:上海华为技术有限公司      招聘岗位: AI工程师 20-30K·15薪 (数据分析岗位招聘信息)

企业名称:上海华为技术有限公司 招聘岗位: AI工程师 20-30K·15薪 (数据分析岗位招聘信息)
2025-09-01
AI工程师 20-30K·15薪 毕业时间:2026年 招聘截止日期:2025.12.01 1、负责AI领域的软件工程化和产品开发; 2、负责AI算法及系统的设计和实现,包括但不限于:神经网络与机器学习、计 ...

企业名称:中广长城(北京)通信科技     招聘岗位: 数据智算产品经理 10-15K (数据分析岗位招聘信息)

企业名称:中广长城(北京)通信科技 招聘岗位: 数据智算产品经理 10-15K (数据分析岗位招聘信息)
2025-08-29
数据智算产品经理 10-15K 岗位职责: 1、协调好客户和内部资源,推动项目的落地实施,并持续管控、保障项目的质量和进度; 2、针对意向客户进行拜访拓展,以技术专家身份和客户做技术沟通、 ...

企业名称: 数解科技    招聘岗位: 算法工程师(数据分析岗位招聘信息)

企业名称: 数解科技 招聘岗位: 算法工程师(数据分析岗位招聘信息)
2025-08-29
算法工程师 10-11K 北京朝阳区东进国际中心C座 1. 硕士及以上学历,计算机/统计/数学等相关专业; 2. 应届生需具备≥1年算法实习经历(需提供项目证明)。 具备以下技术能力: 1.熟练掌握 LSTM/GR ...

【CDA干货】机器学习中的参数优化:以预测结果为核心的闭环调优路径

【CDA干货】机器学习中的参数优化:以预测结果为核心的闭环调优路径
2025-08-29
机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关键桥梁 —— 模型参数的合理性直接决定预测精度,而预测结果则是检验参数有效性的唯一 ...

【CDA干货】PyTorch 矩阵运算加速库:从原理到实践的全面解析

【CDA干货】PyTorch 矩阵运算加速库:从原理到实践的全面解析
2025-08-20
PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的卷积操作(本质是 im2col 变换后的矩阵乘法),还是 Transformer 模型中的注意力计算, ...

【CDA干货】K-S 曲线、回归与分类:数据分析中的重要工具

【CDA干货】K-S 曲线、回归与分类:数据分析中的重要工具
2025-08-07
K-S 曲线、回归与分类:数据分析中的重要工具​ 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各自承担着不同的角色,又在实际应用中相互关联、协同作用,共同为数据解读、预测和决策 ...

【CDA干货】PyTorch 核心机制:损失函数与反向传播如何驱动模型进化

【CDA干货】PyTorch 核心机制:损失函数与反向传播如何驱动模型进化
2025-07-29
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离不开两大核心引擎:损失函数与反向传播。作为最受欢迎的深度学习框架之一,PyTorch 凭 ...

【CDA干货】LSTM 模型输入长度选择技巧:提升序列建模效能的关键

【CDA干货】LSTM 模型输入长度选择技巧:提升序列建模效能的关键
2025-07-11
LSTM 模型输入长度选择技巧:提升序列建模效能的关键​ 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列依赖问题的独特能力,成为处理时间序列、自然语言等序列数据的核心模型。而输入长度作 ...

【CDA干货】LSTM 输出不确定的成因、影响与应对策略

【CDA干货】LSTM 输出不确定的成因、影响与应对策略
2025-07-07
LSTM 输出不确定的成因、影响与应对策略​ 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在处理时间序列数据和自然语言处理等领域展现出强大的能力。然而,在实际应用中,LSTM 模 ...

企业名称:西安奥途网络科技有限公司上海分公司  招聘岗位:建模算法工程师(数据分析岗位招聘信息)

企业名称:西安奥途网络科技有限公司上海分公司 招聘岗位:建模算法工程师(数据分析岗位招聘信息)
2025-07-03
建模算法工程师 14-15K·13薪 上海长宁区旭辉国际2号楼2号楼410室 岗位职责: 1、负责供应链相关算法的研发、优化和部署,并应用于产品业务场景 2、负责算法的技术方向把 ...

【CDA干货】探秘卷积层:为何一个卷积层需要两个卷积核

【CDA干货】探秘卷积层:为何一个卷积层需要两个卷积核
2025-06-30
探秘卷积层:为何一个卷积层需要两个卷积核​ ​ ​ ​ ​ 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力,在图像识别、语音处理等诸多领域大放异彩。而卷积层作为 CNN 的核心组成部分,其内部 ...

OK
客服在线
立即咨询