cda

数字化人才认证

首页 > 行业图谱 >

SPSS中的转换函数和缺失值函数
2017-07-03
SPSS中的转换函数和缺失值函数 转换函数 NUMBER(strexpr,format)数值。以数字形式返回字符串表达式 strexpr 的值。第二个参数 format 是用于读取 strexpr 的数值格式。因此,如果 NUMBER(name,f8)中 ...

SPSS 缺失值 : 缺失值 分析

SPSS缺失值缺失值分析
2017-11-02
SPSS缺失值:缺失值分析 一、缺失值: 具有缺失值的个案会引发严重的问题,因为典型的建模过程会简单地从分析中丢弃这些个案。如果存在少量缺失值(大约低于个案总数的5%),且这些值可以被认为随 ...

【CDA干货】统计模型的分类与应用场景全解析:从理论到实操,适配不同业务需求

【CDA干货】统计模型的分类与应用场景全解析:从理论到实操,适配不同业务需求
2026-02-14
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析,将抽象的数据转化为可落地的结论,帮助从业者规避风险、预测趋势、优化决策。但统计 ...

【CDA干货】Power BI函数大全:分类、实操与实战全指南

【CDA干货】Power BI函数大全:分类、实操与实战全指南
2026-02-13
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量值计算、时间智能分析,都离不开函数的灵活运用。很多从业者在使用Power BI时,常常陷 ...

【CDA干货】随机森林特征重要性:原理、实操与应用全指南

【CDA干货】随机森林特征重要性:原理、实操与应用全指南
2026-02-12
在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest)作为一种集成学习算法,不仅具备强大的分类与回归能力,还能自动输出各特征的重要性评 ...

表结构数据的获取、加工与使用:CDA数据分析师的核心实操指南

表结构数据的获取、加工与使用:CDA数据分析师的核心实操指南
2026-02-09
表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的核心链路。CDA的核心价值,并非单纯解读数据,而是从数据源头出发,规范获取表结构数据 ...

【CDA干货】随机森林特征重要性分析全解析:从原理到实操,解锁特征核心价值

【CDA干货】随机森林特征重要性分析全解析:从原理到实操,解锁特征核心价值
2026-02-06
在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经营的多项指标、医疗诊断的各类特征),我们往往会陷入“特征冗余”的困境:无关特征、 ...

CDA数据分析师:精通表格结构数据核心功能,解锁高效实操新路径

CDA数据分析师:精通表格结构数据核心功能,解锁高效实操新路径
2026-02-06
在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、高效获取、灵活引用、快速查询、精准计算,以及对其各类重要功能的熟练运用,更是CDA夯 ...

【CDA干货】主成分分析(PCA)实战全解析:从原理简化到落地应用

【CDA干货】主成分分析(PCA)实战全解析:从原理简化到落地应用
2026-02-04
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十几个指标;分析用户画像时,会涉及年龄、消费金额、活跃度、留存率等多个维度。这些指 ...

CDA数据分析师:驾驭业务数据分析全步骤,赋能业务高效落地

CDA数据分析师:驾驭业务数据分析全步骤,赋能业务高效落地
2026-02-04
业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、提升经营效能。不同于泛化的数据分析,业务数据分析以“业务需求为导向、落地执行为目 ...

【CDA干货】信贷违约率的统计分布特征与测算方法研究

【CDA干货】信贷违约率的统计分布特征与测算方法研究
2026-02-03
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、风险准备金的计提精度,而科学的测算方法则是确保违约率数据可靠、支撑信贷决策的基础 ...

CDA数据分析师:以战略分析方法为翼,赋能企业长远发展

CDA数据分析师:以战略分析方法为翼,赋能企业长远发展
2026-02-03
企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、规避经营风险、明确发展方向提供了核心支撑,它跳出日常运营的细节,立足全局与长远, ...

【CDA干货】复杂抽样的统计描述:方法、要点与实操解析

【CDA干货】复杂抽样的统计描述:方法、要点与实操解析
2026-02-02
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但在实际场景中(如大规模人口调查、分层特征明显的群体研究、区域化数据采集),简单随 ...

CDA数据分析师与商业数据分析总体流程:全链路实操与价值闭环

CDA数据分析师与商业数据分析总体流程:全链路实操与价值闭环
2026-01-30
商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统认证的专业化数据人才,正是串联起商业数据分析全流程、推动每一个环节高效落地的核心 ...

CDA数据分析师与统计制图:以可视化赋能数据叙事与决策

CDA数据分析师与统计制图:以可视化赋能数据叙事与决策
2026-01-29
统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目了然,是连接数据洞察与业务决策的关键桥梁。CDA(Certified Data Analyst)数据分析 ...

【CDA干货】箱线图上下限在线计算:原理、工具与实操指南

【CDA干货】箱线图上下限在线计算:原理、工具与实操指南
2026-01-28
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分析、质量控制、学术研究等场景。其中,上下限(又称异常值截断点)的计算是箱线图绘制 ...

CDA数据分析师与六种核心分析方法:从工具到价值的落地路径

CDA数据分析师与六种核心分析方法:从工具到价值的落地路径
2026-01-28
数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、归因分析,构成了从“呈现事实”到“指导行动”的完整分析链路,是CDA(Certified Dat ...

【CDA干货】特征重要性分析:从模型到业务的核心决策依据

【CDA干货】特征重要性分析:从模型到业务的核心决策依据
2026-01-27
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的关键环节。它通过量化各特征对目标变量的影响程度,筛选出核心有效特征,剔除冗余干扰 ...

CDA数据分析师与数据分析基础范式:方法论落地与价值赋能

CDA数据分析师与数据分析基础范式:方法论落地与价值赋能
2026-01-27
数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目标导向,为数据从业者提供了可复用、可迭代的工作准则。CDA(Certified Data Analyst ...

数据分析与CDA数据分析师:核心概念与价值逻辑

数据分析与CDA数据分析师:核心概念与价值逻辑
2026-01-26
在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资源与业务价值的关键纽带。想要深入理解数据驱动的底层逻辑,需先厘清数据分析与CDA数据 ...

OK
客服在线
立即咨询