cda

数字化人才认证

首页 > 行业图谱 >

pytorch中多分类的focal loss应该怎么写?

pytorch中多分类的focal loss应该怎么写?
2023-04-12
PyTorch是一种广泛使用的深度学习框架,它提供了丰富的工具和函数来帮助我们构建和训练深度学习模型。在PyTorch中,多分类问题是一个常见的应用场景。为了优化多分类任务,我们需要选择合适的损失函数。在本篇文章 ...

如何利用OpenCV识别图像中的矩形区域?

如何利用OpenCV识别图像中的矩形区域?
2023-04-12
OpenCV是一个强大的计算机视觉库,它提供了各种功能,包括图像处理、特征检测以及目标识别等。在本文中,我们将探讨如何使用OpenCV识别图像中的矩形区域。 步骤1:读取图像 首先,我们需要从文件或摄像头中 ...

为什么用Keras搭建的LSTM训练的准确率和验证的准确率都极低?

为什么用Keras搭建的LSTM训练的准确率和验证的准确率都极低?
2023-04-11
Keras是一个高级神经网络API,它简化了深度学习模型的构建和训练过程。其中,LSTM(Long Short-Term Memory)是一种常用的循环神经网络(RNN),适用于时序数据处理。然而,在使用Keras搭建LSTM模型进行训练时,有时会 ...

用xgboost做分类,预测结果输出的为什么不是类别概率?

用xgboost做分类,预测结果输出的为什么不是类别概率?
2023-04-10
XGBoost是一种基于决策树的集成学习算法,在分类问题中通常被用来预测二元或多元分类结果。与传统的决策树相比,XGBoost具有更优秀的准确性和效率。 然而,在使用XGBoost进行分类时,其输出通常不是类别概率, ...

如何计算决策树的各特征重要程度?

如何计算决策树的各特征重要程度?
2023-04-07
决策树是一种常用的机器学习算法,它可以对数据进行分类和预测。在决策树中,特征(或属性)重要性是指每个特征对模型准确性的贡献程度。因此,了解如何计算特征重要性是非常有用的,可以帮助我们选择最相关的特征 ...

为什么NLP模型训练1~3个epoch就可以收敛,但是CV模型很多需要训练十几甚至上百个epoch?

为什么NLP模型训练1~3个epoch就可以收敛,但是CV模型很多需要训练十几甚至上百个epoch?
2023-04-07
NLP和CV都是机器学习领域中的重要分支,但在训练模型时存在一些差异。NLP模型通常只需1~3个epoch就可以达到收敛,而CV模型则需要更多的epoch才能收敛。这种差异主要是因为两者处理数据的方式不同。 首先,NLP模 ...

LSTM 中为什么要用 tanh 激活函数?tanh 激活函数的作用及优势在哪里?

LSTM 中为什么要用 tanh 激活函数?tanh 激活函数的作用及优势在哪里?
2023-04-07
LSTM是一种常用的循环神经网络架构,它可以有效地解决传统RNN中长序列训练过程中产生的梯度消失和梯度爆炸问题。LSTM通过使用门控机制来控制信息的流动,其中tanh激活函数扮演了重要角色。 tanh激活函数是一种 ...

如何进行多变量LSTM时间序列预测未来一周的数据?

如何进行多变量LSTM时间序列预测未来一周的数据?
2023-04-07
随着时间序列分析的普及,LSTM 成为了深度学习中最常用的工具之一。它以其优异的性能和对数据的自适应特征提取而闻名。然而,在实际应用中,我们通常需要通过多变量来预测未来时间序列数据。本文将介绍如何使用多 ...

使用pytorch 训练一个二分类器,训练集的准确率不断提高,但是验证集的准确率却波动很大,这是为啥?

使用pytorch 训练一个二分类器,训练集的准确率不断提高,但是验证集的准确率却波动很大,这是为啥?
2023-04-07
当我们训练机器学习模型时,我们通常会将数据集划分为训练集和验证集。训练集用来训练模型参数,而验证集则用于评估模型的性能和泛化能力。在训练过程中,我们经常会观察到训练集的准确率持续提高,但是验证集的准 ...

Pytorch的nn.CrossEntropyLoss()的weight怎么使用?

Pytorch的nn.CrossEntropyLoss()的weight怎么使用?
2023-04-07
Pytorch是深度学习领域中广泛使用的一个深度学习框架,它提供了丰富的损失函数用于模型训练。其中,nn.CrossEntropyLoss()是用于多分类问题的常用损失函数之一。它可以结合权重参数对样本进行加权处理,以应对数据 ...

ONNX转Pytorch有什么好的方法吗?

ONNX转Pytorch有什么好的方法吗?
2023-04-07
ONNX(Open Neural Network Exchange)是一种跨平台、开放源代码的深度学习模型交换格式。它可以用于在不同的深度学习框架之间转移模型,其中包括PyTorch。在本文中,我们将探讨如何将ONNX模型转换为PyTorch模型的 ...

lstm做时间序列预测时间序列长度应该怎么设置?

lstm做时间序列预测时间序列长度应该怎么设置?
2023-04-06
LSTM(Long Short-Term Memory)是一种常用于时间序列预测的神经网络模型。在使用LSTM进行时间序列预测时,要考虑到输入序列和输出序列的长度问题。因为LSTM是一种逐步处理序列数据的模型,输入序列的长度会直接影 ...

在神经网络中,先进行BatchNorm还是先运行激活函数?

在神经网络中,先进行BatchNorm还是先运行激活函数?
2023-04-03
在神经网络中,BatchNorm(批归一化)和激活函数是两个关键的组成部分,对于它们的顺序,存在不同的观点和实践。本文将从理论和实践两方面探讨这个问题,并提出一个综合考虑的解决方案。 理论分析 BatchNorm ...

用了更多特征,为什么xgboost效果反而变差了?

用了更多特征,为什么xgboost效果反而变差了?
2023-04-03
XGBoost是一种流行的算法,常用于解决回归问题和分类问题。它通过集成多个决策树来提高模型的精度和泛化能力。尽管有时候添加更多的特征可能会改善模型的性能,但有时候它可能会导致模型的性能反而变差。在本文中 ...

为什么CNN中的注意力机制都是加在提取特征的神经网络中?

为什么CNN中的注意力机制都是加在提取特征的神经网络中?
2023-04-03
在深度学习中,卷积神经网络(Convolutional Neural Network,CNN)是一种可以自动从原始数据中学习特征的强大工具。然而,在某些情况下,我们需要更加准确地捕获输入数据中的关键信息,以便更好地完成任务,比如 ...

为什么训练好的lstm模型每次输出的结果不一样?

为什么训练好的lstm模型每次输出的结果不一样?
2023-04-03
LSTM(Long Short-Term Memory)模型是一种特殊的循环神经网络(Recurrent Neural Network,RNN),其能够处理序列数据并在某种程度上解决梯度消失和梯度爆炸问题。训练好的LSTM模型在使用时,每次输出的结果可能 ...

神经网络loss值很小,但实际预测结果差很大,有什么原因?

神经网络loss值很小,但实际预测结果差很大,有什么原因?
2023-04-03
神经网络是一种模拟人类神经系统运作的计算模型,可以完成很多复杂的任务,如图像识别、语音识别和自然语言处理等。在训练神经网络时,最重要的指标是损失函数(loss function),用于衡量模型预测结果与真实值之 ...

如何限制神经网络输出值的范围?

如何限制神经网络输出值的范围?
2023-03-31
神经网络(Neural Network)是一种强大的机器学习模型,它可以对各种类型的数据进行建模和预测。在许多应用程序中,我们需要将神经网络输出值限制在特定范围内,例如0到1之间或-1到1之间。这篇文章将介绍几种限制 ...

如何确定神经网络的最佳层数与神经元个数?

如何确定神经网络的最佳层数与神经元个数?
2023-03-31
神经网络的层数和神经元个数是决定其性能和复杂度的重要参数。然而,确定最佳的层数和神经元个数并非易事。在本文中,我们将介绍一些常用的方法来确定神经网络的最佳层数和神经元个数。 神经网络层数的确定 ...

数据回归预测更适合用哪种神经网络模型?

数据回归预测更适合用哪种神经网络模型?
2023-03-31
数据回归预测是指利用历史数据来预测未来数值的变化趋势。在现代科技时代,数据已经成为一种非常宝贵的资源。人们通过对大量数据的分析和处理,可以有效地预测未来趋势,并做出正确的决策。神经网络作为一种强大的 ...

OK