京公网安备 11010802034615号
经营许可证编号:京B2-20210330
聚类分析是一种常用的数据分析方法,它可以将相似性较高的样本归为一类,并将不同类别的样本区分开来。在SPSS中,聚类分析包括两种连接方式:组内连接和组外连接。这两种连接方式有着不同的计算方法和应用场景。
一、组内连接
组内连接是指在聚类分析中,对于同一簇内的样本之间进行距离度量,并取其平均值作为该簇的代表性点与其他簇进行比较。具体来说,组内连接采用的是最短距离法(single linkage)、最长距离法(complete linkage)或者平均距离法(average linkage)。
最短距离法:该方法计算的是每个簇中距离最近的两个样本之间的距离。即假设簇A和簇B各有n个样本,则计算组内距离时需要计算A中的每个样本与B中的每个样本之间的距离,然后取其中最小值作为组内距离。
最长距离法:该方法计算的是每个簇中距离最远的两个样本之间的距离。即假设簇A和簇B各有n个样本,则计算组内距离时需要计算A中的每个样本与B中的每个样本之间的距离,然后取其中最大值作为组内距离。
平均距离法:该方法计算的是每个簇中所有样本之间距离的平均值。即假设簇A和簇B各有n个样本,则计算A中每个样本与B中每个样本之间的距离,然后将这些距离求和并除以n^2得到组内距离。
二、组外连接
组外连接是指在聚类分析中,对于不同簇之间进行距离度量,并取其平均值作为不同簇之间的距离。具体来说,组外连接采用的是类平均法(between-groups linkage)。
类平均法计算的是不同簇之间所有样本之间距离的平均值。即假设簇A和簇B各有n1和n2个样本,则计算A中每个样本与B中每个样本之间的距离,然后将这些距离求和并除以n1*n2得到不同簇之间的距离。
三、差别比较
组内连接和组外连接的计算方式不同,因此它们在聚类分析中的应用场景也不同。
组内连接主要应用于提高同一簇内样本之间的相似性,即将相似度较高的样本归为同一簇。最短距离法和平均距离法适合于样本分布比较密集的情况,而最长距离法则适合于样本分布比较稀疏的情况。
组外连接主要应用于不同簇之间的区分,即将相似度较低的样本划分到不同簇中。类平均法适合于样本分布比较均匀的情况。
需要注意的是,选择不同的连接方式会影响聚类结果的稳定性和可解释性,在
选择连接方式时需要根据实际问题和数据特点进行权衡。
此外,聚类分析还需要考虑其他方面的影响因素,如距离度量方法、聚类数目等。在选择距离度量方法时,需要根据数据类型和数据特点来选择,如欧氏距离适合于连续型数据,曼哈顿距离适合于分类变量等。而在确定聚类数目时,需要结合相关的统计指标(如轮廓系数、Calinski-Harabasz指数等)来评估聚类结果的质量,并选择最优的聚类数目。
总之,聚类分析是一种强大的数据分析方法,可以帮助我们发现数据中的潜在模式和规律。在使用SPSS进行聚类分析时,需要注意不同连接方式的计算方法和应用场景,并根据实际情况选择合适的参数组合以获得更加准确和可靠的聚类结果。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05