cda

数字化人才认证

首页 > 行业图谱 >

学习泛化能力的关键因素
2024-12-06
数据分析的世界充满了千变万化,而学会泛化能力是每位数据分析师追求的终极目标。在推荐系统中,协同过滤算法的特征提取起着至关重要的作用,它们扮演着连接用户行为和个性化推荐之间的桥梁。 协同过滤算法特征提取 ...

如何评估预测模型的准确性和 泛化能力 ?

如何评估预测模型的准确性和泛化能力
2024-03-21
预测模型的准确性和泛化能力评估是机器学习中非常重要的任务。这些评估指标可以帮助我们了解模型在未知数据上的表现,并决定是否适用于实际应用。在下面的文章中,我将介绍一些常用的方法来评估预测模型的准确性和 ...
为什么神经网络具有泛化能力
2023-03-30
神经网络是一种计算模型,它通过学习输入数据的特征,自动提取和表达数据中的规律,并能够推广到未见过的数据中。这种能力被称为泛化能力。 神经网络的泛化能力可以归结为以下几个原因: 模型参数的优化 神经网络 ...

正则化---提高深度学习模型的 泛化能力

正则化---提高深度学习模型的泛化能力
2020-07-23
前面文章小编简单给大家介绍了泛化能力的一些基础知识,今天给大家带来的是提高模型泛化能力的方法--正则化。 一、首先来回顾一下什么是泛化能力 泛化能力(generalization ability),百科给出的定义是:机器 ...

机器学习中的 泛化能力 指的是什么?

机器学习中的泛化能力指的是什么?
2020-07-03
概括地说,泛化能力(generalization ability)是指机器学习算法对新鲜样本的适应能力。学习的目的是学到隐含在数据对背后的规律,对具有同一规律的学习集以外的数据,经过训练的网络也能给出合适的输出,该能力称为 ...

交叉验证:评估模型的 泛化能力 表现

交叉验证:评估模型的泛化能力表现
2020-06-16
注明:本文章所有代码均来自scikit-learn官方网站 在实际情况中,如果一个模型要上线,数据分析员需要反复调试模型,以防止模型仅在已知数据集的表现较好,在未知数据集上的表现较差。即要确保模型的泛化能力 ...

神经网络的 泛化能力 差吗?

神经网络的泛化能力差吗?
2020-05-21
泛化能力,英文全称generalization ability,指机器学习算法对新鲜样本的适应能力,一种预测新的input类别的能力。 通过学习找到隐含在数据背后的规律,并对具有同一规律的学习集以外的数据,这种经过训练的网络可 ...

【CDA干货】前向神经网络隐藏层与神经元个数的确定:从原理到实操指南

【CDA干货】前向神经网络隐藏层与神经元个数的确定:从原理到实操指南
2025-10-29
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个开发者都会面临的核心决策。这两个参数直接决定了模型的 “容量”—— 即拟合复杂数据 ...

【CDA干货】卷积层之后:归一化与激活函数的取舍之道

【CDA干货】卷积层之后:归一化与激活函数的取舍之道
2025-10-24
在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都会面临的基础决策。这三者的组合并非随意搭配,而是深刻影响模型训练稳定性、收敛速度 ...

【CDA干货】神经网络越大越好吗?—— 规模选择的辩证思考与实践边界

【CDA干货】神经网络越大越好吗?—— 规模选择的辩证思考与实践边界
2025-10-22
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4,神经网络的规模似乎正朝着 “越大越好” 的方向演进。但事实果真如此吗?神经网络的 ...

【CDA干货】神经网络隐藏层个数怎么确定?从原理到实战的完整指南

【CDA干货】神经网络隐藏层个数怎么确定?从原理到实战的完整指南
2025-10-21
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐藏层 MLP 识别复杂图像),太多则会引发 “过拟合”“训练缓慢”“资源浪费”(如用 1 ...

【CDA干货】特征单变量筛选:从原理到实战,高效精简特征的核心方法

【CDA干货】特征单变量筛选:从原理到实战,高效精简特征的核心方法
2025-10-21
在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特征(如 “用户 ID”“无效时间戳”),既能降低后续建模的计算成本(如减少 50% 特征可 ...

CDA 数据分析师:以量化策略分析框架为刃,破解企业决策的 “数据密码”

CDA 数据分析师:以量化策略分析框架为刃,破解企业决策的 “数据密码”
2025-10-17
在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍板” 做促销可能导致成本失控,零售靠 “店长经验” 备货可能造成库存积压。而量化策 ...

【CDA干货】机器学习参数重要性分析:从参数类型到落地实践,优化模型性能的核心指南

【CDA干货】机器学习参数重要性分析:从参数类型到落地实践,优化模型性能的核心指南
2025-10-16
在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这些参数的微小调整都可能显著影响模型的预测精度、泛化能力甚至训练效率。但很多从业者 ...

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战
2025-10-09
在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 “量化错误”(计算预测值与真实值的差距),反向传播负责 “定位错误来源”(沿着神 ...

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南
2025-09-29
XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型,但传统决策树存在 “易过拟合、精度有限、对噪声敏感” 等缺陷。而 XGBoost(Extreme ...

【CDA干货】深度神经网络神经元个数确定指南:从原理到实战的科学路径

【CDA干货】深度神经网络神经元个数确定指南:从原理到实战的科学路径
2025-09-25
深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关键超参数之一 —— 过少的神经元会导致模型 “欠拟合”(无法学习到数据的复杂规律), ...

【CDA干货】人工智能重塑工程质量检测:核心应用、技术路径与实践案例

【CDA干货】人工智能重塑工程质量检测:核心应用、技术路径与实践案例
2025-09-24
人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一道防线”。传统检测模式依赖人工肉眼观察、手持设备采样、破坏性试验,存在效率低(如 ...

【CDA干货】机器学习解决实际问题的核心关键:从业务到落地的全流程解析

【CDA干货】机器学习解决实际问题的核心关键:从业务到落地的全流程解析
2025-09-09
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于推荐系统、金融风控、工业质检、医疗诊断等领域。然而,并非所有机器学习项目都能实现 ...

【CDA干货】随机森林算法的核心特点:原理、优势与应用解析

【CDA干货】随机森林算法的核心特点:原理、优势与应用解析
2025-09-05
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning)中 Bagging 算法的经典代表,凭借对单决策树缺陷的优化,成为分类、回归任务中的 “万 ...

OK
客服在线
立即咨询