
活动类型:行业聚会
开始时间:2014-12-27 14:00 至 2014-12-27 17:00
活动地点:东直门航空服务大厦(楼)
报名截止:2014-12-26 14:00
在数据呈指数增长的时代,大数据、云计算、移动互联网等新生事物已经改变了BI的市场环境。大数据厂商正表现得来势汹汹,传统BI厂商相对而言似乎陷入守势。风云变幻的当下,传统BI会面临怎样的挑战与机遇?
目前,大数据与商业智能的结合已经应用到各行各业。那么传统的BI与现代BI有什么区别和联系呢?大数据又如何与BI结合?且等我们本次的嘉宾和参会的俱乐部会员为我们解答并一起探讨吧!志同道合的朋友们还等什么,报名走起!
报名条件
1. CDMC会员,任何对BI、数据挖掘、数据分析感兴趣的人士,参加过人大经济论坛现场培训班的同学也可报名等待审核;
2. 拟在聚会上发表高质量演讲内容的人士优先(演讲时间控制在20分钟之内,需提供PPT供筛选);
3. BI方面的专家和技术人员优先。我们将根据报名人的条件,从中选择约30人通知参加聚会。演讲者及其演讲的题目,将在聚会前公布。
4. 演讲内容包括但是不限于以下主题:
二、大数据如何与商业智能结合
三、商业智能的发展目前面临哪些挑战
四、商业智能在各个行业的应用
聚会议程:
1. 演讲人发表演讲(每人约30分钟);
2. 针对演讲内容提问讨论(20分钟);
3. 约3名演讲人结束后,自由讨论发言。
邀请嘉宾(后续会增加):
李凯:
博易智软(北京)技术有限公司董事长兼CEO,中国社会科学院金融专业博士。企业信息化及商业智能(BI)市场专家,在商业智能(BI)领域有着丰富的实践和咨询顾问经历。十余年的行业经验与积淀,对于当前商业智能(BI)市场有着深入研究,并且深谙市场发展动向,在企业信息化领域有着独到的见解,曾提出商业智能(BI)产品的七大走向,以及企业选择商业智能(BI)产品的五大关注点等一系列的观点得到了广泛认可。
主题:大数据时代下的商业智能(BI)
1.大数据背景下BI特色;
2.大数据时代下BI新元素;
3.BI新的发展趋势。
拟参加本次聚会者,可以将“姓名、手机号码、来自公司(学校)、职务(学历)、演讲PPT等”发到邮箱club@pinggu.org,邮件标题注明“参加聚会”和“新/老会员”字样。或者发短信到15120056136。我们审核通过后,将给您发通知参加本次活动。
关于CDMC及历次聚会详情,可以参考帖子:
http://bbs.pinggu.org/thread-2250292-1-1.html
http://bbs.pinggu.org/thread-3065206-1-1.html
2013年是大数据元年,在美国,大数据的应用正在各个行业风生水起,大至奥巴马竞选总统,小至互联网公司的数据挖掘,人大经济论坛在近10年的耕耘中,统计和计量是论坛最强的专业版块,这些版块吸引了国内数以万计的专业人士参加、给初学者带来教益,给高级者带来接触讨论的机会。为了进一步推动数据分析和数据挖掘技术的进步,增强数据分析技术和商业应用的结合,由人大经济论坛发起,将成立“中国数据分析和数据挖掘俱乐部”(简称CDMC:China Data Miner Club,跟CDMA差一个字,呵呵),欢迎志同道合的朋友参与!
俱乐部目标:
1、促进数据方和技术方的对接
2、技术探讨,促进数据分析和数据挖掘技术的进步
3、创意交流,促成大数据时代的新商业模式
俱乐部活动内容:
1、开展俱乐部沙龙,创造交流和沟通的环境,在会上要求因为有技术和有创意加入的成员宣传自己的成果和创意,有数据的成员宣讲自己的数据开发需求。
2、读书会,研读数据分析和数据挖掘的文章和作品,并一起讨论
3、组建数据分析专用机房和实验室,进行数据分析实验和技术测试
初期我们只吸收具备以下条件任一的会员:
1、有大数据(或在具有大数据的公司任职,希望对数据进行开发,或有数据分析需求)
2、有技术(能在每次聚会中展现自己的技术成果),技术可分别在数据采集,统计分析和数据挖掘等3个领域
3、有创意(能在每次聚会中阐述自己的创意,符合该项条件者请详细说明个人情况,以便审核)
具备以上任意一个条件者,可以将“自己参与的条件(以上三者任一的具体描述)、姓名、联系方式和常住地”4项发到我们的组委会邮箱,邮件标题注明CDMC字样,我们审核通过后,将给您发入会信,并通知每一次活动的安排
具备以上任意一个条件者,可以发送申请至:club@pinggu.org
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18