
SPSS变量视图:变量属性(含新建变量属性)
一、度量标准:(度量、序号、名义)
您可以将测量级别指定为刻度(定距或者定比刻度上的数值数据)、有序或名义。名义数据和有序数据可以是字符串(字母数字)或数值。
1)标定(名义):当变量值表示不具有内在等级的类别时,该变量可以作为名义变量;例如,雇员任职的公司部门。名义变量的示例包括地区、邮政编码和宗教信仰等。
2)有序(序号):当变量值表示带有某种内在等级的类别时,该变量可以作为有序变量;例如,从十分不满意到十分满意的服务满意度水平。有序变量的示例包括表示满意度或可信度的态度分数和优先选择评分。
3)刻度(度量):当变量值表示带有有意义的度规的已排序类别时,该变量可以作为刻度(连续)变量对待,以便在值之间进行合适的距离比较。刻度变量的示例包括以年为单位的年龄和以千美元为单位的收入。
注意:对于有序字符串变量,将假定字符串值的字母顺序反映了类别的真实顺序。例如,对于具有low、medium、high值的字符串变量,类别的顺序将解释为high、low、medium,这个顺序是错误的。通常,使用数值代码代表有序数据更为可靠。
二、缺失值
缺失值将指定数据值定义为用户缺失值。例如,您想要区分因对象拒绝回答问题造成的数据缺失与由于问题不适于该对象而未回答所引起的数据缺失。将指定为用户缺失值的数据值标记为进行特殊处理,并将其从大多数计算中排除。
三、角色
某些对话框支持可用于预先选择分析变量的预定义角色。当打开其中一个对话框时,满足角色要求的变量将自动显示在目标列表中。可用角色包括:
1、输入:变量将用作输入(例如,预测变量、自变量)。
2、目标:变量将用作输出或目标(例如,因变量)。
3、两者:变量将同时用作输入和输出。
4、无:变量没有角色分配。
5、分区:变量将用于将数据划分为单独的训练、检验和验证样本。
6、拆分
四、定制变量属性
1、概念:除了标准变量属性(如值标签、缺失值、测量级别)之外,还可以自己创建定制的变量属性。因此,您可以创建识别调查问题响应类型的变量属性(例如,单选、多选、填空)或计算变量使用的公式。
2、操作:数据-新建设定属性
3、说明:◎定制变量属性的名称用方括号括起。◎以美元符号开头的属性名是保留名称,不能修改这些名称。◎空单元格表示该变量没有属性;单元格中显示为Empty的文本表示该变量具有属性,但还没有为该变量的属性赋值。在单元格中输入文本后,该变量即拥有了具有您所输入的值的属性。◎在单元格中显示的数组...表示此属性是属性数组,即包含多个值的属性。单击单元格中的按钮以显示值列表。
五、自定义变量视图
1、概念:您可以使用自定义变量视图控制变量视图中显示的属性(例如,名称、类型、标签)及其显示顺序。
2、操作:视图-自定义变量视图。
3、说明:◎选择(选中)要显示的变量属性。◎使用向上和向下箭头按钮更改属性的显示顺序。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30