
SPSS混合模型:线性混合模型
一、线性混合模型(分析-混合模型-线性)
1、概念:“线性混合模型”过程扩展了一般线性模型,因此允许数据表现出相关的和不恒定的变异性。因此,线性混合模型提供了不仅能够就数据的均值还能够就其方差和协方差建模的灵活性。此外,“线性混合模型”过程也是用于拟合可作为混合线性模型构建的其他模型的灵活工具。这些模型包括多变量模型、分层线性模型以及随机系数模型。
2、示例。有一家杂货连锁店想知道各种优惠券对客户消费的影响。通过抽取老客户的随机样本,他们记录了每个客户在过去10周内的消费情况。该公司每周向这些客户邮寄一种不同的优惠券。“线性混合模型”用于估计不同的优惠券对消费的影响,同时调整在10周内重复观察每个主体导致的相关性。
3、方法。最大似然(ML)和受约束的最大似然(REML)估计。
4、统计量。描述统计:各个不同的因子水平组合的因变量和协变量的样本大小、均值和标准差。因子水平信息:每个因子水平及其频率的排序值。此外,还有固定效应的参数估计值和置信区间,协方差矩阵的参数的Wald检验和置信区间。类型I和类型III的平方和可用于评估不同的假设。类型III是缺省值。
5、数据。因变量应是定量的。因子应是分类因子,可以具有数字值或字符串值。协变量和权重变量应是定量的。主体和重复变量可为任意类型。
6、假设。假设因变量与固定因子、随机因子和协变量线性相关。固定效应就因变量的均值建模。随机效应则就因变量的协方差结构建模。多个随机效应之间被认为是彼此独立的,并且会为每个效应计算一个单独的协方差矩阵;不过,针对同一随机效应指定的模型项可能是相关的。重复度量就残差的协方差结构建模。假定因变量也来自正态分布。
7、相关过程。在运行分析之前使用“探索”过程来检查数据。如果不怀疑相关的和不恒定的变异性的存在,则可改为使用“GLM单变量”或“GLM重复测量”过程。如果随机效应具有方差成分协方差结构,并且不存在重复度量,则可改用“方差成分分析”过程。
二、选择主体/重复变量(分析-混合模型-线性)
1、主体。主体是可视为独立于其他主体的观察单元。例如,在医学研究中可以认为某患者的血压读数独立于其他患者的读数。如果存在对每个主体的重复度量,而且您想要对这些观察值之间的相关性建模,定义主体就非常重要。例如,您可能期望同一个患者在连续多次就医时得到的血压读数是相关的。主体也可由多个变量的因子水平组合进行定义;例如,您可以指定性别和年龄类别作为主体变量, 主体列表中指定的所有变量都可用于定义残差协方差结构的主体。可以使用部分或者全部变量定义随机效应协方差结构的主体。
2、重复。在此列表中指定的变量用于标识重复观察值。例如,单个变量周可以标识医学研究中10周内的观察值,而月和天可共同用于标识一年内的每一天的观察值。
3、重复协方差类型。这指定残差的协方差结构。可用的结构如下:◎前因:一阶。◎AR(1)。◎AR(1):异质。◎ARMA(1,1)。◎复合对称。◎复合对称:相关性度规。◎复合对称:异质。◎对角线。◎因子分析:一阶。◎因子分析:一阶、异质。◎Huynh-Feldt。◎已标度的恒等。◎Toeplitz。◎Toeplitz:异质。◎未结构化。◎未结构化:相关
三、估计(分析-混合模型-线性-估计)
1、对数似然性收敛性。如果对数似然函数的绝对变化或相对变化小于指定的非负值,则假定收敛。如果指定的值为0,则不使用该标准。
2、参数收敛性。如果参数估计值的最大绝对变化或最大相对变化小于指定的非负值,则假定收敛。如果指定的值为0,则不使用该标准。
3、Hessian收敛性。对于绝对指定,如果基于Hessian的统计量小于指定的值,则假定收敛。对于相对指定,如果统计量小于指定值与对数似然估计的绝对值的乘积,则假定收敛。如果指定的值为0,则不使用该标准。
4、最大得分步长。请求使用Fisher评分算法达到迭代次数n。指定一个正整数。
5、奇异性容许误差。这是在检查奇异性时用作容差的值。指定一个正值。
四、统计量(分析-混响模型-线性-统计量)
1、参数估计。显示固定效应和随机效应参数估计值及其近似标准误。
2、协方差参数检验。显示协方差参数的渐近标准误和Wald检验。
3、参数估值的相关性。显示固定效应参数估计值的渐近相关矩阵。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30