
SPSS混合模型:线性混合模型
一、线性混合模型(分析-混合模型-线性)
1、概念:“线性混合模型”过程扩展了一般线性模型,因此允许数据表现出相关的和不恒定的变异性。因此,线性混合模型提供了不仅能够就数据的均值还能够就其方差和协方差建模的灵活性。此外,“线性混合模型”过程也是用于拟合可作为混合线性模型构建的其他模型的灵活工具。这些模型包括多变量模型、分层线性模型以及随机系数模型。
2、示例。有一家杂货连锁店想知道各种优惠券对客户消费的影响。通过抽取老客户的随机样本,他们记录了每个客户在过去10周内的消费情况。该公司每周向这些客户邮寄一种不同的优惠券。“线性混合模型”用于估计不同的优惠券对消费的影响,同时调整在10周内重复观察每个主体导致的相关性。
3、方法。最大似然(ML)和受约束的最大似然(REML)估计。
4、统计量。描述统计:各个不同的因子水平组合的因变量和协变量的样本大小、均值和标准差。因子水平信息:每个因子水平及其频率的排序值。此外,还有固定效应的参数估计值和置信区间,协方差矩阵的参数的Wald检验和置信区间。类型I和类型III的平方和可用于评估不同的假设。类型III是缺省值。
5、数据。因变量应是定量的。因子应是分类因子,可以具有数字值或字符串值。协变量和权重变量应是定量的。主体和重复变量可为任意类型。
6、假设。假设因变量与固定因子、随机因子和协变量线性相关。固定效应就因变量的均值建模。随机效应则就因变量的协方差结构建模。多个随机效应之间被认为是彼此独立的,并且会为每个效应计算一个单独的协方差矩阵;不过,针对同一随机效应指定的模型项可能是相关的。重复度量就残差的协方差结构建模。假定因变量也来自正态分布。
7、相关过程。在运行分析之前使用“探索”过程来检查数据。如果不怀疑相关的和不恒定的变异性的存在,则可改为使用“GLM单变量”或“GLM重复测量”过程。如果随机效应具有方差成分协方差结构,并且不存在重复度量,则可改用“方差成分分析”过程。
二、选择主体/重复变量(分析-混合模型-线性)
1、主体。主体是可视为独立于其他主体的观察单元。例如,在医学研究中可以认为某患者的血压读数独立于其他患者的读数。如果存在对每个主体的重复度量,而且您想要对这些观察值之间的相关性建模,定义主体就非常重要。例如,您可能期望同一个患者在连续多次就医时得到的血压读数是相关的。主体也可由多个变量的因子水平组合进行定义;例如,您可以指定性别和年龄类别作为主体变量, 主体列表中指定的所有变量都可用于定义残差协方差结构的主体。可以使用部分或者全部变量定义随机效应协方差结构的主体。
2、重复。在此列表中指定的变量用于标识重复观察值。例如,单个变量周可以标识医学研究中10周内的观察值,而月和天可共同用于标识一年内的每一天的观察值。
3、重复协方差类型。这指定残差的协方差结构。可用的结构如下:◎前因:一阶。◎AR(1)。◎AR(1):异质。◎ARMA(1,1)。◎复合对称。◎复合对称:相关性度规。◎复合对称:异质。◎对角线。◎因子分析:一阶。◎因子分析:一阶、异质。◎Huynh-Feldt。◎已标度的恒等。◎Toeplitz。◎Toeplitz:异质。◎未结构化。◎未结构化:相关
三、估计(分析-混合模型-线性-估计)
1、对数似然性收敛性。如果对数似然函数的绝对变化或相对变化小于指定的非负值,则假定收敛。如果指定的值为0,则不使用该标准。
2、参数收敛性。如果参数估计值的最大绝对变化或最大相对变化小于指定的非负值,则假定收敛。如果指定的值为0,则不使用该标准。
3、Hessian收敛性。对于绝对指定,如果基于Hessian的统计量小于指定的值,则假定收敛。对于相对指定,如果统计量小于指定值与对数似然估计的绝对值的乘积,则假定收敛。如果指定的值为0,则不使用该标准。
4、最大得分步长。请求使用Fisher评分算法达到迭代次数n。指定一个正整数。
5、奇异性容许误差。这是在检查奇异性时用作容差的值。指定一个正值。
四、统计量(分析-混响模型-线性-统计量)
1、参数估计。显示固定效应和随机效应参数估计值及其近似标准误。
2、协方差参数检验。显示协方差参数的渐近标准误和Wald检验。
3、参数估值的相关性。显示固定效应参数估计值的渐近相关矩阵。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22