京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【每周一本书第2波】Spark大数据分析技术与实战
在大数据背景下,各领域对数据相关服务的需求不断提升,迫切需要一种高效通用的大数据处理引擎。相对于第一代大数据生态系统Hadoop中的MapReduce,Spark是一种基于内存的、分布式的大数据处理引擎,其计算速度更快,更加适合处理具有较多迭代次数的问题;Spark中还提供了丰富的API,使其具有极强的易用性;与此同时,Spark实现了“一栈式”的大数据解决方案,即在Spark内核基础上提出了Spark GraphX、Spark Streaming、Spark MLlib、Spark SQL等组件,使其不仅能够对海量数据进行批处理,同时还具备流式计算、海量数据交互式查询等功能,可以满足包括教育、电信、医疗、金融、电商、政府、智慧城市和安全等诸多领域中的大数据应用需求。
Spark作为下一代大数据处理引擎,经过短短几年的飞跃式发展,正在以燎原之势席卷业界,现已成为大数据产业中的一股中坚力量。本书主要针对大数据技术初学者,着重讲解了Spark内核、Spark GraphX、Spark SQL、Spark Streaming和Spark MLlib的核心概念与理论框架,并提供了相应的示例与解析,是初学者快速入门和学习Spark的不二之选。
【每周一本书】又是一周,CDA数据分析师携手工业出版社将于每周三展开赠书活动,每周给各位读者提供3-5本赠书,希望带动各位读者能借此机会每周充一次电。(注:书籍将于10天内发放到中奖者手中。参与方式见下文)
作者简介
董轶群,吉林大学计算机科学与技术学院博士毕业。曾在吉林大学“符号计算与知识工程”教育部重点实验室从事空间关系建模研究,参与了多个国家自然科学基金重点项目与面上项目的申报与研究工作,并在项目中主要负责空间方向关系建模、空间拓扑关系建模的研究工作。目前作为经管之家(原人大经济论坛)大数据讲师,主讲Spark、Hbase、Scala等大数据核心课程,并从事大数据相关的理论与应用研究工作。重点关注海量数据背景下空间关系建模与智能交通的结合研究,并在国内期刊和国际会议上发表了一系列相关理论的研究成果。
曹正凤,统计学博士,经管之家(原人大经济论坛)大数据中心总工程师,经管之家CDA大数据分析师培训负责人,北京博宇通达科技有限公司技术总监。致力于大数据分析前沿领域研究,主持首发集团智慧交通大数据中心建设项目,基于大数据平台的互联网金融风险监控系统项目,参与国家社科基金项目《基于大数据整合的空气质量测度方法研究》。
赵仁乾,北京邮电大学管理科学与工程硕士,现就职于北京电信规划设计院任高级经济师,从事移动、联通集团及各省分公司市场、业务、财务规划,经济评价及运营咨询。重点研究方向包括离网用户挖掘、市场细分与精准营销、移动网络价值区域分析、潜在价值客户挖掘等。
王安,布本智能首席数据官,北京大学光华管理学院MBA,北京大学商务智能中心专家组成员。专注数据化决策,互联网金融风险管理与精准营销。在数据决策领域拥有十多年的实践经验,曾服务多家大中型银行、保险公司及互联网金融公司。同时也积极参与数据决策教育领域,为北京大学、人民大学、北京航空航天大学、北京理工大学等院校机构提供相关课程和数据教育辅导。
内容提要
Spark作为下一代大数据处理引擎,经过短短几年的飞跃式发展,正在以燎原之势席卷业界,现已成为大数据产业中的一股中坚力量。
本书着重讲解了Spark内核、Spark GraphX、Spark SQL、Spark Streaming和Spark MLlib的核心概念与理论框架,并提供了相应的示例与解析。
全书共分为8章,其中前4章介绍Spark内核,主要包括Spark简介、集群部署、工作原理、核心概念与操作等;后4章分别介绍Spark内核的核心组件,每章系统地介绍Spark的一个组件,并附以相应的案例分析。
参与方式
扫面下方二维码或者点击阅读原文,填写本书吸引你的理由,得票前5名即可获得本书,C君还将在中奖外的人抽取5位赠送CDA网站免费学习会员一周(可享受全部线上会员课程)
(个人信息请认真填写,方便书籍快递发放)
土豪请点击原文链接订购。订购链接:https://item.taobao.com/item.htm?spm=a1z10.5-c.w4002-11062293336.18.2f669dfb8H2yIo&id=557494390108
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25