京公网安备 11010802034615号
经营许可证编号:京B2-20210330
微访谈 ▏CDA考试是我真正进入数据分析领域的敲门砖
考试状元榜眼以及探花等优等生从小到大从来都是备受推崇的一群人,他们的笔记和经验在很多人眼中更是很多人可遇而不可求的。而他们的很多方法往往是下届学子们复习的方法,今天C君特意拜访了第六届CDA认证考试各位优秀学员的考试经验,并整理后分享给大家,以供学弟学妹们参考并能取得更好的学习经验。
李*灿
LEVEL 1 业务数据分析师状元
本科就读于安徽财经大学统数学院信息与计算科学方向;硕士就读于合肥工业大学经济学院统计学,目前为在读研究生。
如何更高效的复习CDA考试?
报考CDA的原因是想要系统地学习数据分析的基础知识(本身统计学,但觉得学的不够扎实),更重要的原因是想未来可以进一步的发展,学习更多的数据分析方面的东西,我觉得经管之家(原人大经济论坛)是一个非常值得信任的平台,事实上,我在这里真的学到了很多知识,这种体系也越来越清晰。
给学弟学妹们的建议是,在学习的过程中及时去整理思路,反复在脑子里构建一个框架,对于知识点的把握非常有益。然后就是书还是要多看几遍的,每一遍都有不一样的收获!
汪*静
LEVEL 1 业务数据分析师状元
毕业于南京一所财经类学校,专业是金融学。至今毕业已有4个年头了,从事的一直是数据分析工作。刚毕业时进入一家金融数据分析公司,入门数据分析。
工作两年后,进入房地产事业单位,做的是后台各系统房地产数据的整合和分析。现在就职于省住建厅,做省级房地产市场数据的分析工作。
如何更高效的复习CDA考试?
我想把数据分析往更深入方向学习,可能我很难成为大数据分析师,使用hadoop这些,但是从统计学到机器语言却是我可以掌握的。人的想法可能随时在变,具体发展规划得一步一步实践出来,但我很肯定我希望能在这个领域中有所学有所专。
给学弟学妹的建议是:CDA一级考试不难,只要掌握考纲和书本内容基本都不会有大问题。事实上我没有把CDA考试作为单纯一门考试,而是我真正进入数据分析领域的一个敲门砖,它是帮助我建立数据分析架构的。在准备考试之前我看过很多数据分析案例和分析框架的书,这也让我准备考试过程很轻松。很感谢这门考试,可能很多人看来一级基本都是选择判断题型,没有大挑战可言。但其实它的考试内容设置很棒,是能够帮助搭建数据分析框架的。
张*坤
LEVEL 1 业务数据分析师榜眼
2013年毕业于大连某高校,毕业后就职于政府机关,工作内容类似于人事管理,职位为助理。2016年考研,今年9月份开始读研。
如何更高效的复习CDA考试?
我的工作和数据分析并无关联,学习数据分析是兴趣使然。几年之前我想到一个问题,就是如果把一篇英文文章中的标点去掉,统一大小写,能不能发明一个算法,通过学习其他文章的语法规则,把纯由字母串组成的数据还原成文章?至少可以预测当前位置下一位的字母是什么?我自己尝试了很多算法,清楚的记得,一开始随机预测准确度是0.23,后来通过利用字母的分布,字母的前后关系等信息,使预测准确度提高到0.35,虽然进步不大,但是让我感到了数据分析的威力。在那之后很长时间都对机器学习、人工智能等学科比较感兴趣,并且自学了相关的课程。
给学弟学妹的建议:其实我也挺懒,但是一想到1000元钱的报名费,我就来了劲头(手动滑稽)。
1、正经的说,首先肯定是把书从头到尾看两遍,并且把spss、sas、数据资料准备好,按照书中说的操作一遍,这样印象深刻。
2、然后是看考试大纲,有些知识点分值高就重点看,比如主成分分析,对应分析等,书上看不懂就网上查资料,理论大致了解就行,重点是应用,学有余力理论也要搞清楚。其实我觉得书的作用就是大纲,能把学习框架画出来,这是CDA最大的作用,由于数据分析是交叉学科,内容比较繁杂,深入学习还得靠自己查资料。
3、最后就是做题了,书后的练习题都要搞明白,官网上的模拟题也要做,然后根据模拟题在百度上搜类似的题。另外希望书后的题能有一个简单的解释,像我这种自学的真是没有地方问老师。
杨*琴
LEVEL 2 业务数据分析师榜眼
2010-2015年在法国读本科和硕士,专业是计量经济与统计
2015-2016年在一家法国咨询公司工作,担任Data mining和BI工程师2016至今在德勤风险咨询担任分析师
如何更高效的复习CDA考试?
在数据分析这个领域,首先是不断提升知识技能和方法,通过工作实践,了解不同行业需求,同时结合自己掌握的知识和经验,用数据分析帮助企业解决问题。逐步培养自己成为一名真正的数据科学家。
给学弟学妹的建议:
1、合理系统安排复习时间,尽量保证每天都要看书;
2、着重理解和运用每个知识点,使所学内容融会贯通,使知识系统化,对问题的理解更深刻。
如何报考CDA认证考试?
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08