京公网安备 11010802034615号
经营许可证编号:京B2-20210330

CDAS2016中国数据分析师行业峰会圆桌会议环境,众多数据科学界的专家针对数据分析师行业的人才发展展开了交流和讨论。
专家们一致认为不管在国内还是在国外,数据科学家都是稀缺资源。而要成为数据科学家,首先要成为优秀的分析师。
IBM大数据大学首席数据科学家Saeed Aghabozorgi认为,数据科学家有多年数据分析的经验,可以回答管理者的问题,帮助管理者进行决策,提供决策依据报告;但数据分析师的工作相对简单,可以每日接触数据,如果有必要创立新的算法,也可以做算法方面的研发,“数据分析师可能是初级的数据科学家”。
不管是数据分析师还是数据科学家,对数据的深刻理解离不开对业务的深入认识。对此,CDA数据分析研究院院长常国珍介绍,CDA数据分析师在建立之初就比较偏重于业务,在逐步建立课程体系的过程当中,也注重引入企业案例课程,培养数据分析师的实战能力。
那么,如何从小白一步步进阶成为数据科学家呢?
纽约时报的一篇文章告诉我们,成为数据科学家真的是很简单的事情。在修完几门数据科学的课之后,一个做web开发的创业公司,就会因为你的新技能,高薪聘请你了。然后出任CEO,迎娶白富美。
首先,知己知彼,方能百战而不怠,数据科学家作为企业运营发展的贤内助和灵魂人物,他的技能构成是:
然后,我们深入企业,了解企业中心团队的人员构成:
20%:IT团队
Task:数据仓库和数据管理;仪表盘和业务指标;KPI设计级标准;特定的管理信息系统
30%:业务团队
Task:生成营销活动清单,确定规模;测试、控制和维护;营销活动部署;设计营销方案;联络策略
50%:分析团队
Task:数据探索与假设检验;制定损益标准;数据驱动业务分析;营销活动设计;建议、评估和优化。
企业分析人员的成长路径:
最后,看你骨骼惊奇,送你一套数据科学家的学习资源:
1. IBM大数据大学(BDU)该平台提供了一些免费的在线学习课程,同时也提供了解决真实数据应用问题的方案。如R,Python,OpenRefine。CDA数据分析师也和BDU达成深度合作,同时CDA系列的第一门课程:《数据挖掘导论》也已经在IBM大数据大学上面正式发布。可以通过传送门感受:https://bigdatauniversity.com.cn/courses/introduction-data-mining/
2. Coursera是最大的在线公开课平台之一,其中有很多都是和数据科学相关。
如:杜克大学的“精通Excel数据分析”;密歇根大学的“大家一起,从0开始学Python”; 约翰霍普金斯大学的R编程。ETC…大家可以自己去挖掘。
3. CDA数据分析师致力于传播优质的教学资源,官网公开SPSS,Python,R等公开视频资源可供免费观看:https://www.cda.cn/shipin.html 未来也会逐渐开放更多的免费资源供大家学习观看。
如果你是一个很有自律性的人类生物,你可以通过参加以上课程和更多开放的资源来get到数据科学相关技能。
当然,资源多有时候也是一种问题,面对如此眼花缭乱的课程和分类,我该如何选择?一个人学习遇到问题无法解决?我需要同行的伴侣一起学习进步?
CDA数据分析师Level I课程,带你从业务数据分析开始,稳扎稳打,带你有组织有纪律的走上你的数据科学家之路!
培训信息
北京海淀&远程(SAS EG):9月24~10月30(8天)
北京朝阳(SPSS):10月29~11月20(8天)
授课安排:现场班6900元,远程班4900元
(1) 授课方式:面授直播两种形式,中文多媒体互动式授课方式
(2) 授课时间:上午9:00-12:00,下午13:30-16:30,16:30-17:00(答疑)
(3) 学习期限:现场与视频结合,长期学习加练习答疑。
报名流程
1. 在线填写报名信息

2. 给予反馈,确认报名信息
3. 网上缴费
4. 开课前一周发送电子版课件和教室路线图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08