
[案例]:美零售商用大数据锁定客户
为了锁定个人消费者,美国家居用品零售商Williams-Sonoma把多来源的数据聚合到一起,通过Hadoop平台构建起具有在线营销洞察力的统一仪表盘。
当你将大数据、统计模型和销售分析结合在一起会发生什么呢?如果你是美国家居用品零售商Williams-Sonoma,那么你将获得每天处理5000万行数据的能力,将能够有针对性地向大量个人消费者进行营销。
Williams-Sonoma是一家年营收接近40亿美元、拥有3万名员工的上市企业。该公司负责客户分析的副总裁Mohan Namboodiri目前正试图提升该公司的营销分析水平。Williams-Sonoma并不认为,在线广告和电子邮件会比针对特定客户的营销更为有效。该公司正在试图找到一种办法,以全面获得营销活动归因。也就是说,理解每次针对个人消费者的促销活动的效果。这能够让企业重新分配营销活动预算,以锁定个人消费者,而不是特定的客户群体。
营销分析在过去的用途十分简单,一般是追踪活动代码到你的客户,以了解活动的效果。相对于分类、直接邮寄、群发电子邮件、广告、电话推销等方式,营销活动数据相对易于管理。
营销工具、数据来源和数据规模正在持续增长,其中包括手机短信、横幅广告、在线搜索活动、店内促销、会员卡、鼠标点击率等。借助于涵盖客户数量统计、信用评分等第三方数据,数据来源正变得越来越多。此外,还有一些不受营销控制的因素,比如季节购买习惯和客户购买习惯。最终,管理营销系统会面临诸多挑战,许多营销策略取决于不同的应用或机构。
最新的营销系统使得针对不同客户量身制订新品推广、打折促销或消费积分方案变得更加容易。但是,为了发挥最大效果,营销人员需要完全清楚哪些方案针对哪些客户,同时注意不让他们的客户感到厌烦。例如,经常性地群发电子邮件。这些做法会导致难以观察客户活动,以及难以以最有效的方式进行营销。
问题是多方面的。由于容量、速率和多样性等因素,这实际上是一个大数据问题;各种各样互不相连的系统,使得其成为了一个数据孤岛问题;利用给定因素,试图理解针对个人消费者的营销活动效果,是一个统计分析问题。例如,一些客户可能只会在圣诞节期间对电子邮件促销做出回应,而另外一些客户可能会点击电子邮件促销,并在全年进行购买。
通过营销渠道的加权,营销归因仪表盘显示出了针对每名客户的销量。
为了对信息进行准确评估,你需要一个能够直观显示活动与购买行为之间关联关系的仪表盘。Williams-Sonoma选择的营销归因SaaS解决方案由UpStream创建。UpStream开发团队采用了一个综合商业背景、营销、计算机科学、数学、物理和统计的多学科解决方案,来解决复杂的商业问题。
为了应对大数据和数据孤岛的挑战,UpStream的托管服务使用Hadoop作为ETL(提取/转换/加载)中间件和分布式处理数据仓库。Hadoop被用于准备来自营销程序的数据,对客户行为进行评分。Williams-Sonoma向UpStream提供其内部的营销数据(包括网站浏览、移动网站、客户服务中心等)。UpStream将把它们与来自Experian等代理商的第三方客户数据汇聚在一起。
数据聚合能够让UpStream完成许多任务。首先,它们能够通过Hadoop评估综合数据,并迅速推出大量针对个人消费者的营销活动,处理每个客户端每天5000多万的评分。其次,它们让Williams-Sonoma在所有相关活动、与零售商店的互动、在线营销和采购中都能够拥有一个统一的仪表盘。
数据聚合还让统计分析成为了可能。UpStream通过用R语言编写的生存回归模型(即众所周知的风险模型或时间至事件模型)创建了一种全新的解决方案。这些模型在卫生保健行业已经被成功的应用,不过其应用环境仅为涵盖数百名病人的小型数据集。
UpStream改进了这些模型,以为零售商处理特定的营销,分析出每次针对客户采购的营销活动的加权效果。在这种情况下,预算能够被更为有效地分配。为了让解决方案的这一部分更具扩展性,UpStream使用了Revolution Analytics公司的商业版R语言。模型能够根据营销活动预测指定客户的购买可能性。
UpStream和Williams-Sonoma正在继续合作,以针对个人消费者创建定制的、目标明确的营销活动。其模型设计使得他们能够确定哪种营销方式对哪些客户起作用(例如电子邮件相比传统邮件的营销效果),以及哪些客户适用于横幅广告等在线营销活动。
尽管Williams-Sonoma并没有公布详细结果,不过Namboodiri透露,结果非常令人鼓舞,虽然目前还没有确切的数据,但是在规模和质量上均有所提升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18