
[案例]:美零售商用大数据锁定客户
为了锁定个人消费者,美国家居用品零售商Williams-Sonoma把多来源的数据聚合到一起,通过Hadoop平台构建起具有在线营销洞察力的统一仪表盘。
当你将大数据、统计模型和销售分析结合在一起会发生什么呢?如果你是美国家居用品零售商Williams-Sonoma,那么你将获得每天处理5000万行数据的能力,将能够有针对性地向大量个人消费者进行营销。
Williams-Sonoma是一家年营收接近40亿美元、拥有3万名员工的上市企业。该公司负责客户分析的副总裁Mohan Namboodiri目前正试图提升该公司的营销分析水平。Williams-Sonoma并不认为,在线广告和电子邮件会比针对特定客户的营销更为有效。该公司正在试图找到一种办法,以全面获得营销活动归因。也就是说,理解每次针对个人消费者的促销活动的效果。这能够让企业重新分配营销活动预算,以锁定个人消费者,而不是特定的客户群体。
营销分析在过去的用途十分简单,一般是追踪活动代码到你的客户,以了解活动的效果。相对于分类、直接邮寄、群发电子邮件、广告、电话推销等方式,营销活动数据相对易于管理。
营销工具、数据来源和数据规模正在持续增长,其中包括手机短信、横幅广告、在线搜索活动、店内促销、会员卡、鼠标点击率等。借助于涵盖客户数量统计、信用评分等第三方数据,数据来源正变得越来越多。此外,还有一些不受营销控制的因素,比如季节购买习惯和客户购买习惯。最终,管理营销系统会面临诸多挑战,许多营销策略取决于不同的应用或机构。
最新的营销系统使得针对不同客户量身制订新品推广、打折促销或消费积分方案变得更加容易。但是,为了发挥最大效果,营销人员需要完全清楚哪些方案针对哪些客户,同时注意不让他们的客户感到厌烦。例如,经常性地群发电子邮件。这些做法会导致难以观察客户活动,以及难以以最有效的方式进行营销。
问题是多方面的。由于容量、速率和多样性等因素,这实际上是一个大数据问题;各种各样互不相连的系统,使得其成为了一个数据孤岛问题;利用给定因素,试图理解针对个人消费者的营销活动效果,是一个统计分析问题。例如,一些客户可能只会在圣诞节期间对电子邮件促销做出回应,而另外一些客户可能会点击电子邮件促销,并在全年进行购买。
通过营销渠道的加权,营销归因仪表盘显示出了针对每名客户的销量。
为了对信息进行准确评估,你需要一个能够直观显示活动与购买行为之间关联关系的仪表盘。Williams-Sonoma选择的营销归因SaaS解决方案由UpStream创建。UpStream开发团队采用了一个综合商业背景、营销、计算机科学、数学、物理和统计的多学科解决方案,来解决复杂的商业问题。
为了应对大数据和数据孤岛的挑战,UpStream的托管服务使用Hadoop作为ETL(提取/转换/加载)中间件和分布式处理数据仓库。Hadoop被用于准备来自营销程序的数据,对客户行为进行评分。Williams-Sonoma向UpStream提供其内部的营销数据(包括网站浏览、移动网站、客户服务中心等)。UpStream将把它们与来自Experian等代理商的第三方客户数据汇聚在一起。
数据聚合能够让UpStream完成许多任务。首先,它们能够通过Hadoop评估综合数据,并迅速推出大量针对个人消费者的营销活动,处理每个客户端每天5000多万的评分。其次,它们让Williams-Sonoma在所有相关活动、与零售商店的互动、在线营销和采购中都能够拥有一个统一的仪表盘。
数据聚合还让统计分析成为了可能。UpStream通过用R语言编写的生存回归模型(即众所周知的风险模型或时间至事件模型)创建了一种全新的解决方案。这些模型在卫生保健行业已经被成功的应用,不过其应用环境仅为涵盖数百名病人的小型数据集。
UpStream改进了这些模型,以为零售商处理特定的营销,分析出每次针对客户采购的营销活动的加权效果。在这种情况下,预算能够被更为有效地分配。为了让解决方案的这一部分更具扩展性,UpStream使用了Revolution Analytics公司的商业版R语言。模型能够根据营销活动预测指定客户的购买可能性。
UpStream和Williams-Sonoma正在继续合作,以针对个人消费者创建定制的、目标明确的营销活动。其模型设计使得他们能够确定哪种营销方式对哪些客户起作用(例如电子邮件相比传统邮件的营销效果),以及哪些客户适用于横幅广告等在线营销活动。
尽管Williams-Sonoma并没有公布详细结果,不过Namboodiri透露,结果非常令人鼓舞,虽然目前还没有确切的数据,但是在规模和质量上均有所提升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15