2020-12-15
阅读量:
899
处理缺失数据
Pandas中缺失值相关的方法主要有以下三个:
isnull方法用于判断数据是否为空数据;
fillna方法用于填补缺失数据;
dropna方法用于舍弃缺失数据。
上面两个方法返回一个新的Series或者DataFrame,对原数据没有影响,如果想在原数据上进行直接修改,使用inplace参数:
data = pd.DataFrame([[1,6.5,3],[1,np.nan,np.nan],[np.nan,np.nan,np.nan],[np.nan,6.5,3]]) data.dropna() #输出 0 1 2 0 1.0 6.5 3.0
对DataFrame来说,dropna方法如果发现缺失值,就会进行整行删除,不过可以指定删除的方式,how=all,是当整行全是na的时候才进行删除,同时还可以指定删除的轴。
data.dropna(how='all',axis=1,inplace=True) data #输出 0 1 2 0 1.0 6.5 3.0 1 1.0 NaN NaN 2 NaN NaN NaN 3 NaN 6.5 3.0
DataFrame填充缺失值可以统一填充,也可以按列填充,或者指定一种填充方式:
data.fillna({1:2,2:3}) #输出 0 1 2 0 1.0 6.5 3.0 1 1.0 2.0 3.0 2 NaN 2.0 3.0 3 NaN 6.5 3.0 data.fillna(method='ffill') #输出 0 1 2 0 1.0 6.5 3.0 1 1.0 6.5 3.0 2 1.0 6.5 3.0 3 1.0 6.5 3.0






评论(0)


暂无数据
推荐帖子
0条评论
0条评论
0条评论