热线电话:13121318867

登录
2020-12-15 阅读量: 1029
DataFrame的创建

DataFrame是一种表格型数据结构,它含有一组有序的列,每列可以是不同的值。DataFrame既有行索引,也有列索引,它可以看作是由Series组成的字典,不过这些Series公用一个索引。
DataFrame的创建有多种方式,不过最重要的还是根据dict进行创建,以及读取csv或者txt文件来创建。

data = {
    'state':['Ohio','Ohio','Ohio','Nevada','Nevada'],
    'year':[2000,2001,2002,2001,2002],
    'pop':[1.5,1.7,3.6,2.4,2.9]
}
frame = pd.DataFrame(data)
frame

#输出
    pop state   year
0   1.5 Ohio    2000
1   1.7 Ohio    2001
2   3.6 Ohio    2002
3   2.4 Nevada  2001
4   2.9 Nevada  2002

DataFrame的行索引是index,列索引是columns,我们可以在创建DataFrame时指定索引的值:

frame2 = pd.DataFrame(data,index=['one','two','three','four','five'],columns=['year','state','pop','debt'])
frame2

#输出
        year    state   pop debt
one     2000    Ohio    1.5  NaN
two     2001    Ohio    1.7  NaN
three   2002    Ohio    3.6  NaN
four    2001    Nevada  2.4  NaN
five    2002    Nevada  2.9  NaN

使用嵌套字典也可以创建DataFrame,此时外层字典的键作为列,内层键则作为索引:

pop = {'Nevada':{2001:2.4,2002:2.9},'Ohio':{2000:1.5,2001:1.7,2002:3.6}}
frame3 = pd.DataFrame(pop)
frame3
#输出
      Nevada  Ohio
2000    NaN   1.5
2001    2.4   1.7
2002    2.9   3.6

我们可以用index,columns,values来访问DataFrame的行索引,列索引以及数据值,数据值返回的是一个二维的ndarray

frame2.values
#输出
array([[2000, 'Ohio', 1.5, 0],
       [2001, 'Ohio', 1.7, 1],
       [2002, 'Ohio', 3.6, 2],
       [2001, 'Nevada', 2.4, 3],
       [2002, 'Nevada', 2.9, 4]], dtype=object)


90.8605
0
关注作者
收藏
评论(0)

发表评论

暂无数据
推荐帖子