2020-12-15
阅读量:
1174
DataFrame的创建
DataFrame是一种表格型数据结构,它含有一组有序的列,每列可以是不同的值。DataFrame既有行索引,也有列索引,它可以看作是由Series组成的字典,不过这些Series公用一个索引。
DataFrame的创建有多种方式,不过最重要的还是根据dict进行创建,以及读取csv或者txt文件来创建。
data = {
'state':['Ohio','Ohio','Ohio','Nevada','Nevada'],
'year':[2000,2001,2002,2001,2002],
'pop':[1.5,1.7,3.6,2.4,2.9]
}
frame = pd.DataFrame(data)
frame
#输出
pop state year
0 1.5 Ohio 2000
1 1.7 Ohio 2001
2 3.6 Ohio 2002
3 2.4 Nevada 2001
4 2.9 Nevada 2002DataFrame的行索引是index,列索引是columns,我们可以在创建DataFrame时指定索引的值:
frame2 = pd.DataFrame(data,index=['one','two','three','four','five'],columns=['year','state','pop','debt'])
frame2
#输出
year state pop debt
one 2000 Ohio 1.5 NaN
two 2001 Ohio 1.7 NaN
three 2002 Ohio 3.6 NaN
four 2001 Nevada 2.4 NaN
five 2002 Nevada 2.9 NaN使用嵌套字典也可以创建DataFrame,此时外层字典的键作为列,内层键则作为索引:
pop = {'Nevada':{2001:2.4,2002:2.9},'Ohio':{2000:1.5,2001:1.7,2002:3.6}}
frame3 = pd.DataFrame(pop)
frame3
#输出
Nevada Ohio
2000 NaN 1.5
2001 2.4 1.7
2002 2.9 3.6我们可以用index,columns,values来访问DataFrame的行索引,列索引以及数据值,数据值返回的是一个二维的ndarray
frame2.values
#输出
array([[2000, 'Ohio', 1.5, 0],
[2001, 'Ohio', 1.7, 1],
[2002, 'Ohio', 3.6, 2],
[2001, 'Nevada', 2.4, 3],
[2002, 'Nevada', 2.9, 4]], dtype=object)
90.8605
3
0
关注作者
收藏
评论(0)
发表评论
暂无数据
推荐帖子
0条评论
0条评论
0条评论

