2020-03-25
阅读量:
3815
简述一下朴素贝叶斯的优缺点和适用场景
优点:
1. 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率;
2. 对大数量训练和查询时具有较高的速度。即使使用超大规模的训练集,针对每个项目通常也只会有相对较少的特征数,并且对项目的训练和分类也仅仅是特征概率的数学运算而已;
3. 对小规模的数据表现很好,能个处理多分类任务,适合增量式训练(即可以实时的对新增的样本进行训练);
4. 对缺失数据不太敏感,算法也比较简单,常用于文本分类;
5. 朴素贝叶斯对结果解释容易理解。
缺点:
1. 需要计算先验概率;
2. 分类决策存在错误率;
3. 对输入数据的表达形式很敏感;
4. 由于使用了样本属性独立性的假设,所以如果样本属性有关联时其效果不好。
朴素贝叶斯应用领域:
1. 欺诈检测中使用较多;
2. 一封电子邮件是否是垃圾邮件;
3. 一篇文章应该分到科技、政治,还是体育类;
4. 一段文字表达的是积极的情绪还是消极的情绪;
5. 人脸识别。






评论(0)


暂无数据
推荐帖子
2条评论
6条评论
7条评论