热线电话:13121318867

登录
2019-06-24 阅读量: 676
降维方法?

降维方法?

答:

缺失值比率 (Missing Values Ratio)该方法的是基于包含太多缺失值的数据列包含有用信息的可能性较少。因此,可以将数据列缺失值大于某个阈值的列去掉。阈值越高,降维方法更为积极,即降维越少。

低方差滤波 (Low Variance Filter)与上个方法相似,该方法假设数据列变化非常小的列包含的信息量少。因此,所有的数据列方差小的列被移除。需要注意的一点是:方差与数据范围相关的,因此在采用该方法前需要对数据做归一化处理。

高相关滤波 (High Correlation Filter)高相关滤波认为当两列数据变化趋势相似时,它们包含的信息也显示。这样,使用相似列中的一列就可以满足机器学习模型。对于数值列之间的相似性通过计算相关系数来表示,对于名词类列的相关系数可以通过计算皮尔逊卡方值来表示。相关系数大于某个阈值的两列只保留一列。同样要注意的是:相关系数对范围敏感,所以在计算之前也需要对数据进行归一化处理。

随机森林/组合树(Random Forests)组合决策树通常又被称为随机森林,它在进行特征选择与构建有效的分类器时非常有用。一种常用的降维方法是对目标属性产生许多巨大的树,然后根据对每个属性的统计结果找到信息量最大的特征子集。Eg,如果我们能能够对一个非常巨大的数据集生成非常层次非常浅的树,每棵树只训练一小部分属性。如果一个属性经常成为最佳分裂属性,那么它很有可能是需要保留的信息特征。对随机森林数据属性的统计评分会向我们揭示与其它属性相比,哪个属性才是预测能力最好的属性。

主成分分析(PCA)通过正交变换将原始的n维数据集变换到一个新的呗称作主成分的数据集中。变换后的结果中,第一个主成分具有最大的方差值,每个后续的成分在与前述主成分正交条件限制下与具有最大方差。降维时仅保存前m个主成分即可保持最大的数据信息量。需要注意的是主成分变换对正交向量的尺度敏感。数据在变换前需要进行归一化处理。同样也需要注意的是,新的主成分并不是由实际系统产生的,因此在进行PCA变换后会丧失数据的解释性。

反向特征消除,所有分类算法先用n个特征进行训练。每次降维操作,采用n-1个特征对分类器训练n次,得到新的n个分类器。将新分类器中错分率变化最小的分类器所用的n-1维特征作为降维后的特征集。不断的对该过程进行迭代,即得到降维后的结果。第k次迭代过程中得到的是n-k维特征分类器。通过选择最大的错误容忍率,我们可以得到在选择分类器上打到指定分类性能最小需要多少个特征。

降维本质:提取数据中有用的信息,用最少的数据得到最有用的结果

0.0000
3
关注作者
收藏
评论(0)

发表评论

暂无数据
推荐帖子