热线电话:13121318867

登录
2019-06-24 阅读量: 541
K-means算法的原理是什么?要怎么描述?

K-means算法的原理是什么?要怎么描述?

答:

k-means是划分方法中较经典的聚类算法之一。由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。

k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地 选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。 这个过程不断重复,直到准则函数收敛。

步骤:

  (1) 任意选择k个对象作为初始的簇中心;

  (2) repeat;

  (3) 根据簇中对象的平均值,将每个对象(重新)赋予最类似的簇;

  (4) 更新簇的平均值,即计算每个簇中对象的平均值;

  (5) until不再发生变化。

0.0000
0
关注作者
收藏
评论(0)

发表评论

暂无数据
推荐帖子