热线电话:13121318867

登录
2019-04-11 阅读量: 1087
python自定义分箱

问题描述:

有一个数据框列与数字值:

df['percentage'].head()
46.5
44.2
100.0
42.12

希望将列视为bin计数:

bins = [0, 1, 5, 10, 25, 50, 100]

怎样才能将结果作为箱子与他们一起得到value counts?

[0, 1] bin amount
[1, 5] etc
[5, 10] etc
......

解决方法:

1、pandas.cut

bins = [0, 1, 5, 10, 25, 50, 100]
df['binned'] = pd.cut(df['percentage'], bins)
print (df)
percentage binned
0 46.50 (25, 50]
1 44.20 (25, 50]
2 100.00 (50, 100]
3 42.12 (25, 50]

bins = [0, 1, 5, 10, 25, 50, 100]
labels = [1,2,3,4,5,6]
df['binned'] = pd.cut(df['percentage'], bins=bins, labels=labels)
print (df)
percentage binned
0 46.50 5
1 44.20 5
2 100.00 6
3 42.12 5

2、numpy.searchsorted

bins = [0, 1, 5, 10, 25, 50, 100]
df['binned'] = np.searchsorted(bins, df['percentage'].values)
print (df)
percentage binned
0 46.50 5
1 44.20 5
2 100.00 6
3 42.12 5

s = pd.cut(df['percentage'], bins = bins).value_counts()
print (s)
(25, 50] 3
(50, 100] 1
(10, 25] 0
(5, 10] 0
(1, 5] 0
(0, 1] 0
Name: percentage, dtype: int64

s = df.groupby(pd.cut(df['percentage'], bins = bins)).size()
print (s)
percentage
(0, 1] 0
(1, 5] 0
(5, 10] 0
(10, 25] 0
(25, 50] 3
(50, 100] 1
dtype: int64
35.5375
3
关注作者
收藏
评论(0)

发表评论

暂无数据
推荐帖子