2019-04-11
阅读量:
982
python的等深分箱
python的等深分箱自定义函数:
class Equal_depth_box:
def equal_box(list, bin_num):
'''
param:
list:you need bin box list
bin_num: you want bin num
'''
bin_num = 10
list.sort() #need sort can replace by others
list_2 = list.copy()
all_num = len(list_2)
bin_sep = all_num/bin_num
bin_sep = int(bin_sep)
bin_list = []
for i in range(1,bin_num):
bin_dict = {}
bin_dict = i*bin_sep
bin_list.append(bin_dict)
bin_real_list = []
for i in bin_list:
#print(i)
bin_real_dict = {}
bin_real_dict = list[i]
bin_real_list.append(bin_real_dict)
return bin_real_list
def replace_box(list_1,replace_list):
'''
param:
list_1:you need bin list
replace_list: from equal box, replace the original list
'''
import pandas as pd
list_max = max(list_1)
list_min = min(list_1)
replace_list.insert(0,list_min -1) #insert start
replace_list.append(list_max + 1) #insert end
list_2 = pd.cut(list_1, bins = replace_list,
labels = range(len(replace_list) - 1)).tolist()
return list_2
if __name__ == '__main__':
import random
list_1 = random.sample(range(1000), 134)
print(list_1.sort())
print('real_list: {}'.format(list_1[0:50]))
replace_list = bin_class.equal_box(list_1, 10)
list_2 = bin_class.replace_box(list_1, replace_list)
print('encode_list: {}'.format(list_2[0:50]))
以下例数据进行过一步的最优分箱,再来做一步等深分箱来进行横向对比。
from Equal_depth_box import *
import pandas as pd
df = pd.read_csv('test.csv', encoding = 'gbk')
df.columns
####需要分箱的列
list_1 = df['deal_city_encoding'].tolist() #本方法是针对于list,所以对于series需要进行变换
####需要分箱的个数
replace_list = Equal_depth_box.equal_box(list_1, 5)
####替代的名称
##因为列表排序所以需要重新排序对齐,这里我有空再想想其他办法
df.sort_values(by="deal_city_encoding", inplace = True)
list_2 = Equal_depth_box.replace_box(list_1, replace_list)
df['deal_city_bin_encoding'] = list_2
df.to_csv('df.csv', encoding = 'gbk', index = False)






评论(0)


暂无数据
推荐帖子
0条评论
0条评论
1条评论