2018-10-29
阅读量:
1227
随机森林优点和注意点
随机森林算法的注意点:
1、 在构建决策树的过程中是不需要剪枝的。
2、 整个森林的树的数量和每棵树的特征需要人为进行设定。
3、 构建决策树的时候分裂节点的选择是依据最小基尼系数的。
随机森林有很多的优点:
a. 在数据集上表现良好,两个随机性的引入,使得随机森林不容易陷入过拟合。
b. 在当前的很多数据集上,相对其他算法有着很大的优势,两个随机性的引入,使得随机森林具有很好的抗噪声能力。
c. 它能够处理很高维度(feature很多)的数据,并且不用做特征选择,对数据集的适应能力强:既能处理离散型数据,也能处理连续型数据,数据集无需规范化。
d. 在创建随机森林的时候,对generlization error使用的是无偏估计。
e. 训练速度快,可以得到变量重要性排序。
f. 在训练过程中,能够检测到feature间的互相影响。
g 容易做成并行化方法。
h. 实现比较简单。






评论(0)


暂无数据
推荐帖子
0条评论
0条评论
1条评论