2018-10-29
阅读量:
779
集成学习概述
1.1 集成学习概述
集成学习在机器学习算法中具有较高的准去率,不足之处就是模型的训练过程可能比较复杂,效率不是很高。目前接触较多的集成学习主要有2种:基于Boosting的和基于Bagging,前者的代表算法有Adaboost、GBDT、XGBOOST、后者的代表算法主要是随机森林。
1.2 集成学习的主要思想
集成学习的主要思想是利用一定的手段学习出多个分类器,而且这多个分类器要求是弱分类器,然后将多个分类器进行组合公共预测。核心思想就是如何训练处多个弱分类器以及如何将这些弱分类器进行组合。
1.3、集成学习中弱分类器选择
一般采用弱分类器的原因在于将误差进行均衡,因为一旦某个分类器太强了就会造成后面的结果受其影响太大,严重的会导致后面的分类器无法进行分类。常用的弱分类器可以采用误差率小于0.5的,比如说逻辑回归、SVM、神经网络。
1.4、多个分类器的生成
可以采用随机选取数据进行分类器的训练,也可以采用不断的调整错误分类的训练数据的权重生成新的分类器。
1.5、多个弱分类区如何组合
基本分类器之间的整合方式,一般有简单多数投票、权重投票,贝叶斯投票,基于D-S证据理论的整合,基于不同的特征子集的整合。






评论(0)


暂无数据
推荐帖子
0条评论
0条评论
1条评论