热线电话:13121318867

登录
2018-10-29 阅读量: 993
分类 (Classification):ROC 和曲线下面积

ROC 曲线

ROC 曲线接收者操作特征曲线)是一种显示分类模型在所有分类阈值下的效果的图表。该曲线绘制了以下两个参数:

  • 真正例率
  • 假正例率

真正例率(TPR) 是召回率的同义词,因此定义如下:

假正例率(FPR) 的定义如下:

ROC 曲线用于绘制采用不同分类阈值时的 TPR 与 FPR。降低分类阈值会导致将更多样本归为正类别,从而增加假正例和真正例的个数。下图显示了一个典型的 ROC 曲线。

为了计算 ROC 曲线上的点,我们可以使用不同的分类阈值多次评估逻辑回归模型,但这样做效率非常低。幸运的是,有一种基于排序的高效算法可以为我们提供此类信息,这种算法称为曲线下面积。

曲线下面积:ROC 曲线下面积

曲线下面积表示“ROC 曲线下面积”。也就是说,曲线下面积测量的是从 (0,0) 到 (1,1) 之间整个 ROC 曲线以下的整个二维面积(参考积分学)。

0.0000
1
关注作者
收藏
评论(0)

发表评论

暂无数据
推荐帖子