
作者:接地气的陈老师
来源:接地气学堂
很多同学很郁闷:天天喊用户画像,可做了几千个用户标签,可都躺在数据库里吃灰,业务不咋用,咋整。今天拿个具体例子讲解一下,看用户画像这玩意到底咋发挥作用。
请听题:业务方准备推一个6、7、8月,VIP用户到店及送一份果盘的服务,问:数据分析能干点啥?
1、标签的基本用法
你可能自然而然想到:提供VIP用户的标签。这确实是可以做的事,因为“VIP用户到店及送一份果盘”听起来简单,可实操起来,
有了这些配套,整个流程才跑的顺:会员到店以后出示微信卡包,亮明身份;店员点击使用果盘权益,扫条码果盘出库,端给会员吃。各个流程都有数据记录,这个权益才能真正落到会员身上。不然少了环节,就会产生灰色账目。比如直接给门店一笔“会员维护费”,鬼知道这些费用会不会变成果盘,会不会吃到会员嘴里,还是最后进了谁的嘴巴或者口袋里。
整个流程中,“VIP用户”就是一个用户标签。它和商品条码一样,起到了串联作用,能让后台、门店都很清楚是谁需要得到服务,得到什么服务,能得多少次服务。有了这些记录,后期才能做深入分析。
很多同学抱怨用户标签吃灰,本质就在于此:没有把标签融合进业务系统,业务流程里去。如果没有CRM,OMS,WMS等系统配合,没有一个门店端水果的流程,那VIP用户标签也就只是个数字标签,没啥作用。
然而,仅仅是停在这个阶段就太简单了。整个需求是业务提的,VIP是按业务规则来的标签,数据分析就是打杂的,这个状态可不好,可要怎么改变一下呢?
2、推动标签应用的两种方式
反问一句:为啥会有6、7、8月到店送果盘这件事?
经过沟通发现,业务的逻辑是这样的。
明白了这层逻辑,我们立即想到,有2种方式可以推动用户画像的应用:
方案1:直接出一个“待消费用户”标签,让销售们抓这些人买单
方案2:为啥非要送果盘,果盘成本多高,多不耐放,出一个“用户需求”标签,看看还能送啥
两个思路,一个是抓人,一个是抓事情。看似差不多,可实行起来难度完全不同。注意,业务已经有了一个VIP送果盘的流程。如果这个流程执行的不好,他们肯定会考虑:“要不要送点其他什么”这时候推方案二就是水到渠成的事。
如果抛开现有流程再推方案一,肯定会收到一堆疑问:
全是事!而且没有一个是数据分析师能搞掂的。
所以方案一往往应用在早起:新项目刚立项,或者老项目改造的启动阶段。这时候业务方内心是一张白纸,可以推很多新内容给他们。而题目的场景是项目已启动,这时候用方案二,更容易借力打力,提高用户画像系统使用率,把标签推广出去。没有审时度势*1,找好推广用户标签的机会,是用户画像系统吃灰的重要原因。
3、深入推广标签的思路
如果采用方案二,第一件事要做的不是急着打标签,而是观察数据。当业务方排脑袋的方案失效的时候,使他们最愿意听建议的时候。这又是审时度势*2的过程,好在数据都在数据分析师手里,所以可以密切关注下面五个指标,来判断业务方到底做的好不好(如下图):
上图列出了业务方逻辑以及我们如何用数据推翻他们的逻辑,注意:在项目执行过程中,想要提一个大家听得进去的意见,最好从下往上,从细节做起。比如先关注哪些果盘浪费严重的店,帮业务方做好执行,赢得信任。如果执行做好了,业绩还是不见起色,大家会自然而然的想到:是不是策略出问题了!还可以用什么策略,这时候进一步推动找更复杂的用户标签,业务方也愿意听了。这又是个审时度势*3的事。
如果我们成功的把握机会,推动到业务方思考:还有哪些标签能识别用户需求!这时候就可以进一步的把更多标签卖出去,让用户画像系统更广泛的被使用。这时候贴标签,建议先做整体分类,再细拆。这样每个用户只有一个标签,标签测试有效/无效的时候,可以避免多重活动叠加带来的负面影响,很清楚的看到哪一类标签有用。从而让业务方更好的积累经验,更依赖用户画像系统,而不是自己的经验判断(如下图):
注意:没有检验过的用户标签是没有说服力的。比如我们标识了:果盘爱好者,那理论上6、7、8月他都会使用果盘,或者这个群体使用果盘的概率明显高于其他群体,有了检验,用户标签才有效。有了大量有效的用户标签做支撑,用户画像系统才能更好地发挥作用,更准确的描述用户或构造复杂的模型。
4、小结
本篇里审时度势四个字出现了3次,这是把数据理论应用到企业里很重要的一环。在企业里推动项目需要找准切入点,配合业务节奏,实现业务上效果,才能吸引大家的注意,提升数据分析的地位。所以就要求数据分析师们不要沉迷于加减乘除,更要审时度势*4,借力打力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12