京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:丁点helper
来源:丁点帮你
无论是单因素还是双因素方差分析,我们可以发现,它们都有一些共性,比如研究的因变量(如前文的硒含量、满意度得分),都是定量变量;而自变量,即分组变量(如地区、教育程度、性别)都是定性变量。
现在我们将前文“满意度得分的例子”继续延伸:除了我们关注的“教育程度”和“性别”外,还有其他变量会影响人们对生活的满意度得分吗?
当然有,比如收入水平!
很显然,一个人的工资多少完全可能直接决定他目前对生活的满意度。因此,倘若我们忽视了调查对象的收入情况,仅研究教育程度和性别的影响,这样就可能造成结果产生偏移,也就是说可能本来没意义的结果变成了有意义,从而得出误导性的判断。
因此,在这种情况下,“收入”这个变量就被称为“协变量”,可以记为“Z”。纳入协变量的方差分析,即称协方差分析。
一般而言,进行协方差分析的协变量为“定量变量”,比如本例中的“人均月收入”,它一般不是研究者重点研究的变量(本例中重点研究的是教育程度和性别),但因为它会对分析结果造成干扰,因此在分析过程中必须要将其纳入。
所以,协方差分析仍然是建立在方差分析这个基本框架之上的,其思想与单因素以及双因素方差分析区别也不大,并且在进行分析前数据需要满足的条件也都需要。
此外,因为加入了一个新的变量——协变量,所以也有些额外了条件需要满足。我们今天对这些条件做些概述。
1)变量的类型:一般而言,进行协方差分析,因变量是定量的连续变量(如本例的“满意度得分”);自变量是分类变量(可以加入多个自变量,如本例中的“教育程度”和“性别”);协变量是连续变量(如本例的“收入”)。
2)线性关系:原则上需要协变量与因变量存在线性关系。
3)平行性假设:分组变量的不同水平下,协变量与因变量的回归直线互相平行。
线性假设和平行性假设初次看起来可能比较难理解,但实际上就是为了排除所谓的交互作用。什么是交互作用呢?
比如我们想研究“教育程度”与“满意度得分”的关系,协变量是收入。在不考虑协变量时,发现随着教育程度的升高,人们的满意度得分也逐渐升高,比如教育上升一个等级(从“高中毕业”到“大学本科”,或者从“大学本科”升至“研究生及以上”),满意度得分都会增加5分。
现在加入“收入”这个协变量之后,发现随着教育程度升高,满意度得分也升高,但是不同的学历程度,其升高的幅度不一样。
比如,加入协变量之后,从“高中毕业”升至“大学本科”,满意度得分仍增加5分;但如果从“大学本科”升至“研究生及以上”,满意度得分仅仅增加3分。这个时候,我们就说收入与教育程度产生了交互作用。
产生了交互作用,也就意味着收入对生活满意度的影响会随着教育程度的变化而变化(注意这里的措辞,收入影响的是满意度和教育程度的相关关系,而不仅仅是其中某一个变量,这是理解交互作用的核心)
这句话也可以反过来说。教育程度对生活满意度的影响会随着人们收入不同而不同,用线性回归的术语来表示就是:不同的教育程度下,收入与满意度得分的回归直线斜率(β)不同,因此,它们就不会平行(两直线平行需要斜率相同)。
所以,想满足平行线假设,就需要协变量与自变量之间不存在交互作用,这个可以通过专门的检验方法来判断。
看到这里,你可能会疑惑,明明在讲方差分析,怎么扯到回归的内容了?
是的,方差分析和回归分析实际上可以看做是一回事儿,只是两者侧重点略有不同,前者主要是比较差异,后者主要是算影响的效应值(即回归系数β,这一点我们后面详述)。
一方面对于多因素或协方差分析的SPSS操作,我们称作“一般线性模型”;另外在进行回归分析之后软件也都会首先弹出一个方差分析的大表,检验整个回归模型是否有意义。
只不过我们在进行回归分析时,并没有严格区分自变量和协变量,而是将它们一股脑地全部纳入回归模型,然后筛选出最终有意义的变量。
因此,我们现在讲的方差分析,其实就是后续回归分析的一些特例,从回归的角度理解方差分析,相信你会看的更加明了!
回到我们今天的主题,除了上述三个条件,在进行协方差分析时也需要注意其他条件,比如常说的正态、独立、方差齐等,处理的方法也和普通的方差分析基本相同,暂不赘述。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19