
作者:丁点helper
来源:丁点帮你
今天我们开始讲什么是卡方分布及卡方检验。
第一个问题是,卡方为什么有平方?
还记得我们在第一篇讲两类错误中谈过的赌场的例子吗,小金赌色子输了很多钱,为了看色子是否有问题,他偷了一颗拿回家想偷偷验证一下是否有人动手脚。
小金闷在家丢了一天,一共丢了902次,而且每一次都做了记录(丢的是昏天黑地,可脑补这个画面)。
下面表格就是小金记录的获得的点数情况,比如一共有242次(27%)出现1点,有56次(6%)出现2点……有196次(22%)出现6点。
实际情况的色子点数
小金怎样通过”狂丢色子“来判断其是否有问题呢?
这就需要用到卡方检验了,实际上也是假设检验的大逻辑。
我们知道小金一共丢了902次,假设这颗色子是正常均匀的,那么每次丢色子,每一点出现的可能性都是1/6,所以理论上每一点出现的次数应该都是:150.33=902/6次。
如下表:我们把每一点实际出现的次数与理论情况下应该出现的次数做一个对比,其中实际观察次数用A表示,理论次数用T表示:
色子点数:理论VS实际
采用假设检验的标准语言来验证就是:
H0:这颗色子是均匀公平,每一点出现的可能性都为1/6;
H1:这颗色子不是均匀公平的,每一点点数出现的概率不都相同;
如果H0假设成立,那么“观察次数”和“理论次数”之间不会差很多;可是如果两者的差距过大,达到我们规定的某个水平,就认为在H0假设成立的情况下是不会出现的,此时就会拒绝原假设,即认为这个色子不是均匀的。
那怎么来计算这个差呢?
依照我们讲标准差的思路,如果直接将实际情况的点数与理论情况点数相减再加和取平均数,基本会得到0的结果,没有什么意义,而取绝对值运算又不方便,所以还是得通过平方。这就是卡方中平方的由来。
卡方值计算
上面这个计算公式,A代表“实际频数”,T代表“理论频数”。
如果把这个公式应用到小金丢色子的例子,就会得到:
卡方值为274.92,其对应的P值小于0.01,也就意味着,如果原假设成立(色子没问题),那么“理论与现实”出现这么大的差距的可能低于5%,我们认为这是不可能,因此,要拒绝原假设,认为“色子有问题”。
所以“十赌九输”是有原因的。
好了,回到今天的正题,小伙伴们可能觉得上面的例子和平常用到的卡方检验好像不太一样。
实际上,原理完全一致。
卡方检验最常用的是检验两个率是否一致,对照上述“丢色子”的例子,我们会先假设这两个率(注意是指总体率)相等,通过相等的总体率,再反推理论发生的频数,然后计算实际的观察频数与理论频数的卡方值来判断差距是否足够大,从而决定假设是否可以被拒绝。
下面以新冠肺炎为例,说明一下卡方检验的应用。
为比较A、B两个城市新冠肺炎病例的检出情况,分别随机抽取A地377人,B地301人,进行核酸检测。结果见下表(数据纯属虚构),现判断两个城市的新冠肺炎检出率是否相同?
如上表,A地的检出率是19.89%;B地的检出率是32.89%,卡方检验就要来判断这两个样本率所代表的总体率是否相等。
现在我们假设它们相等,那怎么计算理论频数呢?
此时就需要用到“合计检出率——25.66% “来算,这个数据就相当于上述色子例子中的1/6,是一个标准。
所以,如果两城市新冠肺炎检出率没有区别,且大概都为25.66%,那理论上A地会检出多少例呢?96.75(377*25.66%),而未检出的就为280.25(377-96.75)。
同理,B地会检出77.25(301*25.66%),未检出的就为223.75(301-77.25)。
现在我们就得到了各城市检出与未检出的理论频数,从而就能计算卡方值。
该卡方值对应的P值小于0.05,所以可以认为A、B两个城市新冠肺炎的检出率不一致,B地检出率更高,感染情况更严重。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25