京公网安备 11010802034615号
经营许可证编号:京B2-20210330
文章来源:DeepHub IMBA
作者: P**nHub兄弟网站
学习如何通过剪枝来使你的模型变得更小
剪枝是一种模型优化技术,这种技术可以消除权重张量中不必要的值。这将会得到更小的模型,并且模型精度非常接近标准模型。
在本文中,我们将通过一个例子来观察剪枝技术对最终模型大小和预测误差的影响。
我们的第一步导入一些工具、包:
最后,初始化TensorBoard,这样就可以将模型可视化:
import os import zipfile import tensorflow as tf import tensorflow_model_optimization as tfmot from tensorflow.keras.models import load_model from tensorflow import keras %load_ext tensorboard
在这个实验中,我们将使用scikit-learn生成一个回归数据集。之后,我们将数据集分解为训练集和测试集:
from sklearn.datasets import make_friedman1 X, y = make_friedman1(n_samples=10000, n_features=10, random_state=0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
我们将创建一个简单的神经网络来预测目标变量y,然后检查均值平方误差。在此之后,我们将把它与修剪过的整个模型进行比较,然后只与修剪过的Dense层进行比较。
接下来,在30个训练轮次之后,一旦模型停止改进,我们就使用回调来停止训练它。
early_stop = keras.callbacks.EarlyStopping(monitor=’val_loss’, patience=30)
我们打印出模型概述,以便与运用剪枝技术的模型概述进行比较。
model = setup_model() model.summary()
让我们编译模型并训练它。
tf.keras.utils.plot_model( model, to_file=”model.png”, show_shapes=True, show_layer_names=True, rankdir=”TB”, expand_nested=True, dpi=96, )
现在检查一下均方误差。我们可以继续到下一节,看看当我们修剪整个模型时,这个误差是如何变化的。
from sklearn.metrics import mean_squared_error predictions = model.predict(X_test) print(‘Without Pruning MSE %.4f’ % mean_squared_error(y_test,predictions.reshape(3300,))) Without Pruning MSE 0.0201
当把模型部署到资源受限的边缘设备(如手机)时,剪枝等优化模型技术尤其重要。
我们将上面的MSE与修剪整个模型得到的MSE进行比较。第一步是定义剪枝参数。权重剪枝是基于数量级的。这意味着在训练过程中一些权重被转换为零。模型变得稀疏,这样就更容易压缩。由于可以跳过零,稀疏模型还可以加快推理速度。
预期的参数是剪枝计划、块大小和块池类型。
from tensorflow_model_optimization.sparsity.keras import ConstantSparsity
pruning_params = {
'pruning_schedule': ConstantSparsity(0.5, 0),
'block_size': (1, 1),
'block_pooling_type': 'AVG'
}
现在,我们可以应用我们的剪枝参数来修剪整个模型。
from tensorflow_model_optimization.sparsity.keras import prune_low_magnitude model_to_prune = prune_low_magnitude( keras.Sequential([ tf.keras.layers.Dense(128, activation='relu', input_shape=(X_train.shape[1],)), tf.keras.layers.Dense(1, activation='relu') ]), **pruning_params)
我们检查模型概述。将其与未剪枝模型的模型进行比较。从下图中我们可以看到整个模型已经被剪枝 —— 我们将很快看到剪枝一个稠密层后模型概述的区别。
model_to_prune.summary()
在TF中,我们必须先编译模型,然后才能将其用于训练集和测试集。
model_to_prune.compile(optimizer=’adam’, loss=tf.keras.losses.mean_squared_error, metrics=[‘mae’, ‘mse’])
由于我们正在使用剪枝技术,所以除了早期停止回调函数之外,我们还必须定义两个剪枝回调函数。我们定义一个记录模型的文件夹,然后创建一个带有回调函数的列表。
tfmot.sparsity.keras.UpdatePruningStep()
使用优化器步骤更新剪枝包装器。如果未能指定剪枝包装器,将会导致错误。
tfmot.sparsity.keras.PruningSummaries()
将剪枝概述添加到Tensorboard。
log_dir = ‘.models’ callbacks = [ tfmot.sparsity.keras.UpdatePruningStep(), # Log sparsity and other metrics in Tensorboard. tfmot.sparsity.keras.PruningSummaries(log_dir=log_dir), keras.callbacks.EarlyStopping(monitor=’val_loss’, patience=10) ]
有了这些,我们现在就可以将模型与训练集相匹配了。
model_to_prune.fit(X_train,y_train,epochs=100,validation_split=0.2,callbacks=callbacks,verbose=0)
在检查这个模型的均方误差时,我们注意到它比未剪枝模型的均方误差略高。
prune_predictions = model_to_prune.predict(X_test) print(‘Whole Model Pruned MSE %.4f’ % mean_squared_error(y_test,prune_predictions.reshape(3300,))) Whole Model Pruned MSE 0.1830
现在让我们实现相同的模型,但这一次,我们将只剪枝稠密层。请注意在剪枝计划中使用多项式衰退函数。
from tensorflow_model_optimization.sparsity.keras import PolynomialDecay
layer_pruning_params = {
'pruning_schedule': PolynomialDecay(initial_sparsity=0.2,
final_sparsity=0.8, begin_step=1000, end_step=2000),
'block_size': (2, 3),
'block_pooling_type': 'MAX'
}
model_layer_prunning = keras.Sequential([
prune_low_magnitude(tf.keras.layers.Dense(128, activation='relu',input_shape=(X_train.shape[1],)),
**layer_pruning_params),
tf.keras.layers.Dense(1, activation='relu')
])
从概述中我们可以看到只有第一个稠密层将被剪枝。
model_layer_prunning.summary()
然后我们编译并拟合模型。
model_layer_prunning.compile(optimizer=’adam’, loss=tf.keras.losses.mean_squared_error, metrics=[‘mae’, ‘mse’]) model_layer_prunning.fit(X_train,y_train,epochs=300,validation_split=0.1,callbacks=callbacks,verbose=0)
现在,让我们检查均方误差。
layer_prune_predictions = model_layer_prunning.predict(X_test) print(‘Layer Prunned MSE %.4f’ % mean_squared_error(y_test,layer_prune_predictions.reshape(3300,))) Layer Prunned MSE 0.1388
由于我们使用了不同的剪枝参数,所以我们无法将这里获得的MSE与之前的MSE进行比较。如果您想比较它们,那么请确保剪枝参数是相同的。在测试时,对于这个特定情况,layer_pruning_params给出的错误比pruning_params要低。比较从不同的剪枝参数获得的MSE是有用的,这样你就可以选择一个不会使模型性能变差的MSE。
现在让我们比较一下有剪枝和没有剪枝模型的大小。我们从训练和保存模型权重开始,以便以后使用。
def train_save_weights():
model = setup_model()
model.compile(optimizer='adam',
loss=tf.keras.losses.mean_squared_error,
metrics=['mae', 'mse'])
model.fit(X_train,y_train,epochs=300,validation_split=0.2,callbacks=callbacks,verbose=0)
model.save_weights('.models/friedman_model_weights.h5')
train_save_weights()
我们将建立我们的基础模型,并加载保存的权重。然后我们对整个模型进行剪枝。我们编译、拟合模型,并在Tensorboard上将结果可视化。
base_model = setup_model()
base_model.load_weights('.models/friedman_model_weights.h5') # optional but recommended for model accuracy
model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(base_model)
model_for_pruning.compile(
loss=tf.keras.losses.mean_squared_error,
optimizer='adam',
metrics=['mae', 'mse']
)
model_for_pruning.fit(
X_train,
y_train,
callbacks=callbacks,
epochs=300,
validation_split = 0.2,
verbose=0
)
%tensorboard --logdir={log_dir}
以下是TensorBoard的剪枝概述的快照。
在TensorBoard上也可以看到其它剪枝模型概述
现在让我们定义一个计算模型大小函数
def get_gzipped_model_size(model,mode_name,zip_name): # Returns size of gzipped model, in bytes. model.save(mode_name, include_optimizer=False) with zipfile.ZipFile(zip_name, 'w', compression=zipfile.ZIP_DEFLATED) as f: f.write(mode_name) return os.path.getsize(zip_name)
现在我们定义导出模型,然后计算大小。
对于剪枝过的模型,tfmot.sparsity.keras.strip_pruning()用来恢复带有稀疏权重的原始模型。请注意剥离模型和未剥离模型在尺寸上的差异。
model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning)
print("Size of gzipped pruned model without stripping: %.2f bytes" % (get_gzipped_model_size(model_for_pruning,'.models/model_for_pruning.h5','.models/model_for_pruning.zip')))
print("Size of gzipped pruned model with stripping: %.2f bytes" % (get_gzipped_model_size(model_for_export,'.models/model_for_export.h5','.models/model_for_export.zip')))
Size of gzipped pruned model without stripping: 6101.00 bytes Size of gzipped pruned model with stripping: 5140.00 bytes
对这两个模型进行预测,我们发现它们具有相同的均方误差。
model_for_prunning_predictions = model_for_pruning.predict(X_test)
print('Model for Prunning Error %.4f' % mean_squared_error(y_test,model_for_prunning_predictions.reshape(3300,)))
model_for_export_predictions = model_for_export.predict(X_test)
print('Model for Export Error %.4f' % mean_squared_error(y_test,model_for_export_predictions.reshape(3300,)))
Model for Prunning Error 0.0264 Model for Export Error 0.0264
您可以继续测试不同的剪枝计划如何影响模型的大小。显然这里的观察结果不具有普遍性。也可以尝试不同的剪枝参数,并了解它们如何影响您的模型大小、预测误差/精度,这将取决于您要解决的问题。
为了进一步优化模型,您可以将其量化。如果您想了解更多,请查看下面的回购和参考资料。
作者:Derrick Mwiti
deephub翻译组:钱三一
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15