
关于方差分析的一些内容,小编已经跟大家分享过很多次了,但基本上就是理论部分,没有结合具体实例。在学习数据分析过程中,大家一定要注意理论结合实操才能更好地掌握。下面小编给大家带来一篇文章:方差分析全解析:以one-way为例,希望对于大家加深方差分析的理解有所帮助。
文章来源: 丁点帮你
作者:丁点helper
昨天的文章,我们对方差分析的整体逻辑进行了初步的介绍,今天将以单向(one-way)方差分析为例,具体梳理方差分析的整个过程。
单向(one-way)方差分析,就是大家很熟悉的单因素方差分析(教科书上叫单向), 一般也称完全随机设计(completely randomized design)的方差分析,是指将研究对象通过完全随机化方法,分配至多个不同的处理组,比较多组的效应指标是否存在差别。
先看如下案例:
为了解大骨节病与粮食中微量元素硒含量之间的关系,某研究团队调查了A(渭源县)、B(青州市)两个大骨节病区和C(泰山区)、D(长清区)两个非大骨节病区。
每个病区随机抽取20户农户并采集面粉,检测面粉中硒元素含量(μg/kg),试分析这4个地区面粉中硒含量是否存在差异。具体的数据情况如下表1。
表1 四地区面粉硒元素含量样本数据表
我们将上述数据绘制成图形(如下图,每个空心小圆圈代表一个样本值),可以很直观地看到,这80个样本值(20*4)各不相同,即它们存在差异。
暂时忽略其他潜在的混杂因素,这种差异的原因可能是由于它们来自不同的地区,但因为四个小组内部的数值也都一一不同,所以,差异也可能仅仅是因为随机误差,通俗地理解就是人们说的运气导致的。
不过,仔细地观察发现两个病区的数据好像明显要低一些,这便提示地区的不同确实有可能造成了目前的差异。
为了验证我们的猜测,就可以采用方差分析来检验:病区与非病区面粉硒含量的差异是否具有统计学意义。
这里需要再明确一点的是,我们的目标是比较这四个地区面粉中硒含量是否有差异,在实际操作中,我们比较的是四个地区硒含量的总体平均数,因此,只要总体平均数有差异,我们就说四地区硒含量有差异。
要进行方差分析,当然,我们首先要进行假设:这四组数据都没有差异,注意是都没有!
在这个假设下,我们可以把这四组数据看做是一个大组,即将上述80个数据视为一个整体。对于这个整体,我们可以计算一个平均数和标准差,即表1中72.22和20.00。
可是实际情况下,这80个数据是分属于四个小组的,因此我们也可以分别计算这四个小组的平均数,即57.11、55.58、85.62、90.55。
如果假设成立(即四组数据都没有差异),那么这四个小组的平均数应该是围绕着整体平均数(即72.22)上下波动的,互相差异应该不是很大。
但现在我们实际获得的数据却显示,小组中最低的均数为57.11、最大的为90.55,直观上看都与72.22的距离不小,所以我们就会怀疑不能把它们看做一个整体(更严谨的表达是,它们不是来自同一个总体),从而拒绝它们相同的假设。
顺着这个思路,我们获得下面这张表格(表2):
表2 方差分析一般结果表
上述表格中涉及的具体的计算过程大家不需要细看,只需大概了解所谓的“离均差平方和(SS)”和“均方(MS)”的计算方法。
然后对照前面我们谈到的方差的概念和计算方法,你是否会发现,不明所以的“均方(MS)”其实可以看做是一种特殊类型的“方差”!
对照下图方差的计算公式:左边是离均差平方和,右边是自由度。
我们首先看衡量“组内变异”的均方(MS组内),在各个小组内部因为没有地区差异,所以MS组内的大小大小仅反映了随机误差(即运气)的情况。
而当假设四组总体均数相同时,组间均方(MS组间)的大小也仅仅反映随机误差的大小。
如何理解这里的谈到的“随机误差”呢?
对于来自同一个总体的两个或多个样本的差异我们可以简单理解为随机误差,也就是说,虽然表面上它们不同,但这种不同并没有意义,也不会反映额外的信息,仅仅是因为运气导致的。
好比你和别人掷色子比大小,虽然你们获得的点数不同,但这种不同完全是因为运气,不能说明任何其他的问题,同时也不会出现一个人总赢、另一个总输的局面。
但是如果对方悄悄在色子上做了点手脚,知道怎样掷可以获得大的点数,这个时候,你们点数的差异就不再仅仅因为运气,还有色子的原因。
用统计学的语言来说,就是你们的差异不仅包含了随机误差,还包含了其他因素。所以,下次如果感觉自己总是在输,就要看看是不是色子出现了问题。
回到本例,既然MS组间和MS组内这两者都仅反映随机误差的大小,那么其携带的信息量就应该没有差异(提示:方差的大小决定了数据的信息量)。
由此,在数值上MS组间与MS组内差异不大,所以使用MS组间除以MS组内时,所获得F值原则上应该在1附近。
如果现在我们获得的数据计算出来的F值比1大很多(对应的P值会很小),则意味着MS组间远大于MS组内,从而表示,MS组间携带了多余的信息,因此,可以证明MS组间的差异不仅仅包含随机误差,还包含其他因素(比如地区不同),结合本例,即意味着四地区间面粉硒含量不都相同!
将上述数据用SPSS运算后获得结果如下表3。很显然,F值超过46,远大于1(注意,在正式情况下F值并非和1比较,这里仅为了方便理解),其对应的P值远小于0.05,由此拒绝零假设,差异有统计学意义,可以认为这四个地区硒含量的总体均数不全相等,也就是说至少有两个地区总体均数不等。
表3 四地区硒含量方差分析结果表
单向方差分析仅告诉我们这四个总体均数不全相等,但具体哪几个不等,哪几个相等呢?这就涉及到两两比较了,这就是我们明天的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22