线性回归就是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。我们在机器学习过程中也经常会遇到构建线性回归模型的场景,对于初学者来说还是比较困难的。今天小编就给大家分享一篇关于python实战线性回归模型的文章,希望对于大家python的学习和使用,以及线性回归模型的构建有所帮助。
文章来源: 早起Python
作者:萝卜
「多元线性回归模型」非常常见,是大多数人入门机器学习的第一个案例,尽管如此,里面还是有许多值得学习和注意的地方。其中多元共线性这个问题将贯穿所有的机器学习模型,所以本文会「将原理知识穿插于代码段中」,争取以不一样的视角来叙述和讲解「如何更好的构建和优化多元线性回归模型」。主要将分为两个部分:
Python 多元线性回归的模型的实战案例有非常多,这里虽然选用的经典的房价预测,但贵在的流程简洁完整,其中用到的精度优化方法效果拔群,能提供比较好的参考价值。
本文的数据集是经过清洗的美国某地区的房价数据集
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv('house_prices.csv') df.info();df.head()
参数说明:
现在我们直接构建多元线性回归模型
from statsmodels.formula.api import ols # 小写的 ols 函数才会自带截距项,OLS 则不会 # 固定格式:因变量 ~ 自变量(+ 号连接) lm = ols('price ~ area + bedrooms + bathrooms', data=df).fit() lm.summary()
红框为我们关注的结果值,其中截距项Intercept的 P 值没有意义,可以不用管它
从上图可以看到,模型的精度较低,因为还有类别变量neighborhood和style没有完全利用。这里我们先查看一下类别变量的类别分布情况:
# 类别变量,又称为名义变量,nominal variables nominal_vars = ['neighborhood', 'style'] for each in nominal_vars: print(each, ':') print(df[each].agg(['value_counts']).T) # Pandas 骚操作 # 直接 .value_counts().T 无法实现下面的效果 ## 必须得 agg,而且里面的中括号 [] 也不能少 print('='*35)
因为类别变量无法直接放入模型,这里需要转换一下,而多元线性回归模型中类别变量的转换最常用的方法之一便是将其转化成虚拟变量。原理其实非常简单,将无法直接用于建模的名义变量转换成可放入模型的虚拟变量的核心就短短八个字:「四散拆开,非此即彼」。下面用一个只有 4 行的微型数据集辅以说明。
从上表中,不难发现:
接下来要做的就是将生成的虚拟变量们放入多元线性回归模型,但要注意的是:「转化后的虚拟变量们需要舍弃一个」,才能得到满秩矩阵。具体原因和有关线性代数的解释可以查看笔者打包好的论文,我们可以理解为,当该名义变量可划分为 n 类时,只需要 n-1 个虚拟变量就已足够获知所有信息了。该丢弃哪个,可根据实际情况来决定。
因此为原数据集的某名义变量添加虚拟变量的步骤为:
注意虚拟变量设置成功后,需要与原来的数据集拼接,这样才能将其一起放进模型。
再次建模后,发现模型精度大大提升,但潜在的多元共线性问题也随之显现出来
在解释模型中虚拟变量的系数之前,我们先消除模型中多元共线性的影响,因为在排除共线性后,模型中的各个自变量的系数又会改变,最终的多元线性回归模型的等式又会不一样。多重线性回归模型的主要假设之一是我们的预测变量(自变量)彼此不相关。我们希望预测变量(自变量)与反应变量(因变量)相关,而不是彼此之间具有相关性。方差膨胀因子(Variance Inflation Factor,以下简称VIF),是「指解释变量之间存在多重共线性时的方差与不存在多重共线性时的方差之比」
上图公式可以看出在方差膨胀因子的检测中:
越大,显示共线性越严重。经验判断方法表明:「当 ,不存在多重共线性;当 ,存在较强的多重共线性;当 ,存在严重多重共线性」。
我们自己来写一个方差膨胀因子的检测函数
def vif(df, col_i): """ df: 整份数据 col_i:被检测的列名 """ cols = list(df.columns) cols.remove(col_i) cols_noti = cols formula = col_i + '~' + '+'.join(cols_noti) r2 = ols(formula, df).fit().rsquared return 1. / (1. - r2)
现在进行检测
test_data = results[['area', 'bedrooms', 'bathrooms', 'A', 'B']] for i in test_data.columns: print(i, '\t', vif(df=test_data, col_i=i))
发现bedrooms和bathrooms存在强相关性,可能这两个变量是解释同一个问题,方差膨胀因子较大的自变量通常是成对出现的。
果然,bedrooms和bathrooms这两个变量的方差膨胀因子较高,这里删除自变量bedrooms再次进行建模
lm = ols(formula='price ~ area + bathrooms + A + B', data=results).fit() lm.summary()
模型精度稍降,但消除了多元共线性后能够使模型的泛化能力提升。再次进行多元共线性检测
test_data = results[['area', 'bedrooms', 'A', 'B']] for i in test_data.columns: print(i, '\t', vif(df=test_data, col_i=i))
那么多元共线性就「只有通过方差膨胀因子才能看的出来吗?」 其实并不一定,通过结合散点图或相关稀疏矩阵和模型中自变量的系数也能看出端倪。下图是未处理多元共线性时的自变量系数。
可以很明显的看出,bathrooms的参数很可能是有问题的,怎么可能bathrooms的数据量每增加一个,房屋总价还减少 1.373*10 的四次方美元呢?简单的画个散点图和热力图也应该知道房屋总价与bathrooms 个数应该是成正比例关系的。
多元线性回归模型的可解释性比较强,将模型参数打印出来即可求出因变量与自变量的关系
所以最终的建模结果如下,且该模型的精度为0.916
另外在等式结果中,截距项Intercept和area,bedrooms等变量的系数都还好理解;A,B 这两个虚拟变量可能相对困难些。其实根据原理部分的表格来看,如果房屋在 C 区,那等式中 A 和 B 这两个字母的值便是 0,所以这便引出了非常重要的一点:使用了虚拟变量的多元线性回归模型结果中,存在于模型内的虚拟变量都是跟被删除掉的那个虚拟变量进行比较。所以这个结果便表示在其他情况完全一样时(即除虚拟变量外的项)A 区的房屋比 C 区低 8707.18 美元,B 区则比 C 区贵 449896.73.7 美元。当然我们也可以画个箱线图来查看与检验,发现结果正如模型中 A 与 B 的系数那般显示。
本文以多元线性回归为基础和前提,在因变量房价与多个自变量的实际观测值建立了多元线性回归模型;分析并检验各个预测变量对因变量的综合线性影响的显著性,并尽可能的消除多重共线性的影响,筛选出因变量有显著线性影响的自变量,对基准模型进行优化,并对各自变量相对重要性进行评定,进而提升了回归模型的预测精度。
数据分析咨询请扫描二维码
寻找数据分析之路 学习路径选择: 数据分析领域广泛,包括统计学、编程(如Python、SQL)、数据可视化等。建议从基础概念开始 ...
2024-12-02数据分析领域是一个广阔而令人兴奋的领域,涉及众多强大工具和软件。掌握这些工具不仅可以提升我们的工作效率,还能让数据讲述更 ...
2024-12-02在当今信息爆炸的时代,数据成为引领业务决策和创新的关键。数据分析作为一项关键技能,已经成为各行业中备受追捧的职业。本文将 ...
2024-12-02在当今竞争激烈的职场环境中,掌握数据分析技能已然成为职业发展中不可或缺的一环。无论你是刚入行的菜鸟还是希望获得更多机会的 ...
2024-12-02重要性和影响 数据分析技能对职业发展具有显著影响。不仅在就业市场竞争激烈,个人职业路径上也起着关键作用。数据分析需求广泛 ...
2024-12-02在追求数据分析师梦想的道路上,最常问及的问题之一是:“最佳学习时间究竟是多久?”这个问题承载着我们对知识获取和实践运用的 ...
2024-12-02在当今信息爆炸的时代,数据早已成为企业决策和发展的核心。掌握数据分析技能不仅可以让你更好地理解数据背后的故事,还可以在职 ...
2024-12-02数学课程对数据分析师的重要性 数据分析师的角色在当今信息时代变得至关重要。他们扮演着解读数据、发现趋势以及为业务决策提供 ...
2024-12-02作为数据分析领域的探险家,我们身处一个充满机遇与挑战的时代。数据分析师不仅面临着广阔的职业前景,还要应对技术进步、人才竞 ...
2024-12-02就业前景与挑战 数据分析师在当前和未来的就业市场中面临着广阔的机遇和挑战。随着大数据时代的到来,企业对数据分析师的需求不 ...
2024-12-02作为数据分析师,掌握数据可视化技术是至关重要的。通过有效的数据呈现和分析,我们能够从数据中提炼出有意义的见解,为业务决策 ...
2024-12-02在今天的数字化时代,数据扮演着至关重要的角色。对于数据分析师而言,熟练掌握各种数据可视化技术至关重要。通过恰到好处的数据 ...
2024-12-02在追求数据分析技能提升的漫漫征途上,制定科学合理的学习计划和精准的时间管理至关重要。本文将为您呈现一份系统且实用的数据分 ...
2024-12-02在当今信息爆炸的时代,数据分析已成为许多行业中不可或缺的一环。然而,要想在这个领域脱颖而出,除了熟练掌握技术工具外,科 ...
2024-12-02在当今数字化时代,数据分析已成为各行各业中至关重要的一环。掌握数据分析技能不仅可以拓宽个人职业发展道路,还能为企业决策提 ...
2024-12-02在追求数据分析职业发展的道路上,合适的学习路径和认证至关重要。从基础到高级,多样化的课程和证书为不同层次的学习者提供了丰 ...
2024-12-02在追求数据分析领域的深度和广度时,建立坚实的基础至关重要。这些基础不仅承载着理解数据的能力,还支撑着对数据进行精确处理和 ...
2024-12-02数据分析基础知识 学习数据分析是一项渐进的过程,从掌握基础知识开始可以帮助我们更好地理解数据的本质以及处理方法。以下是学 ...
2024-12-02在当今信息爆炸的时代,数据分析已成为各行各业提升效率、发现洞见的重要工具。不过,对于初学者来说,学习数据分析可能显得十分 ...
2024-12-02明确学习目标与需求 对于新手,选择入门级课程掌握基础概念和工具。 深入学习统计学、机器学习等高级主题则需要进阶或专业化课 ...
2024-12-02