
作者:Mika
数据:真达
后期:泽龙
【导读】
最近《三十而已》这部剧频频霸占微博热搜,今天我们就来聊一聊。
Python技术部分请直接看第四部分。
Show me data,用数据说话
今天我们聊一聊 《三十而已》
《乘风破浪的姐姐》已成为这个夏天最火爆的话题,前有国综"浪姐"高歌猛进,后有这部剧版"浪姐"《三十而已》让人眼前一亮。
最近微博热搜几乎都被这部剧承包了,几乎是每播一集就能上热搜的那种,让你没追剧都能知道剧情进展到哪儿了。
在这部剧中,江疏影、童瑶和毛晓彤三人携手演绎了30岁都市女性的3种人生以及所面对的3种困境。剧中各种名场面也是让这部剧彻底出圈了。
童瑶饰演的全职太太顾佳,江湖人称:许子言妈妈、散打教练、特级甜品师、情商管理专家、育儿专家、儿童心理学者、中国好闺蜜、顶级宫斗高手、幻山烟花公司幕后老。
为了保护儿子,手撕伤害儿子的人
为融入贵妇圈
掏家底也要买爱马仕鸵鸟皮Kelly28
江疏影饰演的是奢侈品店的销售王漫妮,妥妥的一名沪漂。演绎了目前社会上很多“社畜”的真实生活,生病了身边照顾自己的人都没有,只能一个人住院。
毛晓彤饰演的钟晓芹是一个普通的上海小囡nan,她的婚姻看似稳定,但与丈夫却貌合神离,一个大大咧咧神经大条,另一个沉默寡言、不愿沟通。
那么这部《三十而已》是怎么火起来的?
哪些点最戳中观众的心呢?
今天我们就来用数据带你盘一盘。
01女性角色不断霸屏
近几年这类聚焦女性的影视剧层出不穷:
美剧方面
而今年夏天,屏幕上活跃的女性身影更是不少。前有《乘风破浪的姐姐们》引发的全民讨论,之后的国产剧《二十不惑》和《三十而已》不约而同把话题指向女性的年龄问题。
02《三十而已》怎么突然火了
一开始也许没人想到,这样一部聚焦女性角度的国产都市剧能在这个夏天彻底火了。看到百度指数,对比同期播出也是围绕女性话题的《二十不惑》,《三十而已》的热度和搜索度都要高出很多,从7月17日首播起热度就高居不下。
目前微博话题《三十而已》阅读量达到42.2亿,讨论达到148.8万。该剧也频频霸占微博热搜,几乎更新一集就会有新的热搜,让你忍不住去追剧。
看剧中,你会折服于顾佳的强大家庭女性人设;
剧中钟晓芹的老公陈屿是非常有争议的角色。他在婚姻中对妻子不关心不沟通的态度让很多人气愤不已,一度微博话题被#陈屿气死#还上了热搜。
甚至还有像“众盼芹离”这样的词都出来了。
03《三十而已》中是什么最戳中观众的心?
1豆瓣数据
接着我们分析了豆瓣的短评数据。目前这部剧豆瓣上共有4万2千余人进行评分,分数为8分。在国产剧中是很不错的成绩了。
在评分方面,我们以其中500条数据为代表。
评论中提到最多的主演
我们进行排序发现位居首位的是王漫妮,然后是顾佳和钟晓芹。
豆瓣小组主演话题热度
对比一下在《三十而已》的豆瓣小组里,讨论话题度最高的就属陈屿了。
豆瓣评论词云
豆瓣评论中主要围绕的关键词有"女性"、"剧情"、"喜欢"等方面。演员中"江疏影"、"童瑶"也被多次提到。
2腾讯视频弹幕
接下来我们还分析整理了腾讯视频弹幕数据,目前共出了 15集,共整理了271049条弹幕。
首先,看到用户在发弹幕时最喜欢选用的角色标签排名:
用户喜欢用的弹幕角色
其中王漫妮排名第一,顾佳、钟晓芹分别位居二三。这方面与豆瓣一致。男性角色排名是陈屿以及许幻山。
再看到不同角色的弹幕词云:
王漫妮弹幕词云
江疏影饰演的王漫妮讨论度很高,这也与演员的演技和本身的人气是分不开的。气质这块拿捏的死死的,而且作为奢侈品店销售,王漫妮在话术和专业度上也让人感觉很真实。
顾佳弹幕词云
下面是童瑶饰演的全职太太顾佳。顾佳谐音这个名字照顾家庭,不仅要照顾孩子,把家里打理的井井有条,还有扶持老公的烟花公司,这个女人实在是太不一般了。关键词中 "厉害"、"聪明"、"完美"被多次提到。
钟晓芹弹幕词云
钟晓芹作为普通的上海本地小姑娘,性格"单纯可爱"。而面对一点也不善解人意的老公,弹幕中感叹"怎么还不离婚"的也特别多。
陈屿弹幕词云
陈屿和许幻山两个丈夫都有各自的问题。陈屿性格冷漠,关心自己养的鱼胜过老婆。
许幻山弹幕词云
许幻山是纯粹的烟花设计艺术家,在公司运营方面显得"幼稚",不懂"人情世故",这些方面还真不如他的老婆顾佳。
04如何用Python获取弹幕数据
我们使用Python获取并分析了《三十而已》的腾讯弹幕数据,来分析看看哪个角色最受欢迎。分析流程分为以下几步:
1 数据读入
首先导入所需包。
# 导入库 import os import jieba import numpy as np import pandas as pd from pyecharts.charts import Bar, Pie, Line, WordCloud, Page from pyecharts import options as opts from pyecharts.globals import SymbolType import stylecloud from IPython.display import Image # 用于在jupyter lab中显示本地图
然后使用pandas循环读取数据。
# 读入数据 data_list = os.listdir('../data/') df_all = pd.DataFrame() for i in data_list: # 判断 if i.split('.')[-1] == 'csv': df_one = pd.read_csv(f'../data/{i}', engine='python', encoding='utf-8', index_col=0) df_all = df_all.append(df_one, ignore_index=False) df_all.info()
pandas.core.frame.dataframe'> Int64Index: 271049 entries, 0 to 17637 Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 episodes 271049 non-null int64 1 comment_id 271049 non-null int64 2 oper_name 139035 non-null object 3 vip_degree 271049 non-null int64 4 content 271049 non-null object 5 time_point 271049 non-null int64 6 up_count 271049 non-null int64 dtypes: int64(5), object(2) memory usage: 16.5+ MB pandas.core.frame.dataframe'>
此次一共获取了15集2271049条弹幕数据,每集平均18069条,按照每集平均45分钟计算,每分钟平均401条弹幕,数据预览如下:
豆瓣数据# 提取数据 pattern = r'(王漫妮\s*|钟晓芹\s*|顾佳\s*|陈屿\s*|许幻山\s*|飒飒\s*|浪浪\s*):.*' df_all['danmu_role'] = df_all['content'].str.extract(pattern)[0].str.strip() # 定义函数 def transform_name(x): if x=='王漫妮' or x=='顾佳' or x=='钟晓芹' or x=='陈屿' or x=='许幻山' or x=='飒飒' or x=='浪浪': return 'VIP用户' elif x=='NaN': return '未知用户' else: return '普通用户' df_all['danmu_level'] = df_all['danmu_role'].apply(transform_name) df_all.head()
2 数据预处理
此处对弹幕角色和VIP用户进行处理。
豆瓣数据# 提取数据 pattern = r'(王漫妮\s*|钟晓芹\s*|顾佳\s*|陈屿\s*|许幻山\s*|飒飒\s*|浪浪\s*):.*' df_all['danmu_role'] = df_all['content'].str.extract(pattern)[0].str.strip() # 定义函数 def transform_name(x): if x=='王漫妮' or x=='顾佳' or x=='钟晓芹' or x=='陈屿' or x=='许幻山' or x=='飒飒' or x=='浪浪': return 'VIP用户' elif x=='NaN': return '未知用户' else: return '普通用户' df_all['danmu_level'] = df_all['danmu_role'].apply(transform_name) df_all.head()
3 数据可视化
level_num = df_all['danmu_level'].value_counts() data_pair = [list(z) for z in zip(level_num.index.tolist(), level_num.values.tolist())] # 绘制饼图 pie1 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px')) pie1.add('', data_pair, radius=['35%', '60%']) pie1.set_global_opts(title_opts=opts.TitleOpts(title='弹幕发送人群等级分布'), legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%')) pie1.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%")) pie1.set_colors(['#6FB27C', '#FFAF34']) pie1.render()
role_num = df_all['danmu_role'].value_counts() role_num.drop(['飒飒', '浪浪'], inplace=True) # 柱形图 bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar1.add_xaxis(role_num.index.tolist()) bar1.add_yaxis("", role_num.values.tolist(), category_gap='5%') bar1.set_global_opts(title_opts=opts.TitleOpts(title="VIP用户最喜欢使用的弹幕角色"), visualmap_opts=opts.VisualMapOpts(max_=21027), ) bar1.render()
content_series1 = df_all[df_all.content.str.replace(pattern, '').str.contains('漫妮|疏影')]['content'] text1 = get_cut_words(content_series1) # 绘制词云图 stylecloud.gen_stylecloud(text=' '.join(text1), max_words=1000, collocations=False, font_path=r'C:\Windows\Fonts\msyh.ttc', icon_name='fas fa-heart', size=653, output_name='./html/弹幕角色王漫妮-词云图.png')
结语:
一直以来在世俗的眼光下,婚姻、事业、家庭,是30+女性绕不开的话题。年过三十,不是结婚生子,就是在结婚生子的路上,但对于没有结婚的很可能被称“大龄剩女”。
近年来,关于女性年龄的讨论更是被推到了风口浪尖。综艺《浪姐》播出后,看到一位位30+的女嘉宾在舞台上"兴风作浪",弹幕中有女生留言“好像没那么害怕变老了“而《三十而已》更是展现了30+女性的不同生活状态和机遇,其实女性的人生,不应该被年龄所定义。
三十而已,年华正好!
无论哪个年龄阶段都有不同的精彩!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23