
文章来源:接地气学堂微信公众号
作者: 陈老师
又到一年高考时,又要填志愿,很多人问:“想从事大数据行业的话,报什么专业比较好???”刚好一些同学也有类似问题,今天系统解答一下
直观感觉是:从事数据相关工作和学什么专业没啥关系。特别是,如果把眼光放到部门级领导或以上,就更跟专业没啥关系了。陈老师接触超过200个企业,没有看到特别集中的专业,可见后天努力比先天选专业更重要。但是专业、学校、学历是大家求职的敲门砖。特别是高等教育越来越普及,即使都是敲门砖,某些砖还是更好使的。所以可以按敲门的好使唤程度排排序。
第一位:应用数学
陈老师本人就是被这四个字拖下水的。因为普通大众都对数学两个字深有敬畏。一听说这哥们居然读大学敢读数学,心中一股:卧槽牛X啊!之情便油然而出。如果是985的应用数学,那哥们,就你了。于是各种数据相关的事都会优先拉上你干。明明我研究生是学管理学的。可who care!这数据的活就该你干,你不行你也得上……
O(╯□╰)o
第二位:计算机相关专业
近年来企业招的数据分析师,其实大部分应该叫:数据程序员。基本上都是进公司跑数据的,不做啥“分析”,因此计算机相关专业会有优势。毕竟写代码写的多吗。数据仓储,算法这些就更依赖开发能力,这本来就是计算机专业的范畴。
第三位:市场营销、企业管理专业
实际上,真要做分析的话,需要懂商业知识+有分析思路,这一点文科生会更擅长。而且市场营销、企业管理等专业一定会学市场调查。因此对于数据处理、数据分析的基本操作是了解的。未来走咨询、数据运营、数据分析、市场研究、行业研究的路线是很OK的。
第四位:心理学、社会学
不要小看这两个专业,这两个专业对于数据的应用能力绝对远远超过上边三个专业。知乎注明数据大V chenqin就是搞社会学的,那数据分析能力压倒一大堆只会跑数的表哥。心理学里提假设、设计实验、采集数据、验证假设的思路,就是数据分析的思路,一毛一样。因此这两个专业的数据部门领导还挺多的。
第五位:统计学
和应用数学相反,这是个被名字拖累的专业。人们往往惧怕数学,但一听统计就觉得:好一般哦。是不是就是掰指头数数的。严重低估了统计学的专业性。其实统计学是很适合做数据相关工作的。学统计的同学们思路活跃一点哦。
其他专业:其实完完全全和数据没有关系的专业很少。因为几乎所有的理工专业都要做实验,都设计数据、统计等理论,几乎所有文科专业都要学市场调查,都要搞实证研究。更本质的看,数据分析是一种技能,人人可以学,学了都有用,数据仓储才是相对专业的IT范畴。这是个要用数据说话的年代,懂点数据相关知识挺好的,工作学习两不误。
另:顺便把其他影响因素也一起说了。如果把眼光放到部门级领导或以上,你会发现,适合在数据领域成功的特征还有:
学校&学历:越高越好
985≥普通本科,研究生≥本科生。不要迷信那些所谓
“大专学生自学java三年年薪百万”
“高中辍学搬砖自学ios开发年薪百万”
“初中辍学自学python成为数据科学家进入BAT”
一类的鬼话。现在高等教育这么普及,对在校生而言,就是学历越高,学校越好越吃香。如果你还在学校,还有改变学历和学校的机会,一定要努力一把。如果已经工作了就算了。
星座:处女座
点评:你以为是擅长思考的天蝎……才不是呢,哈哈。这是个很玄学的现象:十个数据部门领导六个处女座。可能因为处女座比较纠结,做的东西很细,因此深得大老板赏识。
Pdp性格:孔雀
点评:你以为是擅长思考的猫头鹰……才不是呢,哈哈。这又是很玄学的现象:十个数据部门领导五个是孔雀。可能因为数据部门比较容易被冷落,孔雀张扬能来事,更容易让大老板看到成绩。
特别提醒:
大学不是职业培训学校,更不是企业的新员工入职培训。所以大学学的课没法直接用到工作上是很正常的。如果有:培训培训就上岗的想法,应该直接去读技校,不要上大学了。想提升实操能力就去找实习,从最基础的地方做起。搬搬砖再回来看看理论,会有更多深刻的认识。
大学能给到每位同学的资源,包括未来的老公/老婆,包括身份认同、包括社交圈子、包括见识增长、包括底层能力提升、包括求职/创业的敲门砖,都是很宝贵的资源。所以不要一门心思的琢磨怎么在四年后当一头合格的社畜,有的是各种选择留给大家,不要辜负了美好时光才是。
祝愿每位学子不负韶华,学有所成。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29