
文章来源:接地气学堂
作者:接地气的陈老师
“推动业务”是数据人最怕的词了。妈耶,还推动业务呢,我自己不被业务部门天天追着屁股要数就不错了,咋个推动法。可领导们最喜欢提这种要求。今天我们就来详细聊聊。首先要分清的是,提这个问题的人是谁,很重要。
问:以下两种情况有什么区别?
A、业务部门领导问:数据分析,如何推动业务发展?
B、数据部门领导问:数据分析,如何推动业务发展?
答:主导权不一样。业务部门问了建议,可以直接去落地。数据部门只是个辅助,说的话如果不对业务胃口,就永远悬在天上。就像开车,抓方向盘的人听了建议能换路线,做副驾驶的哔哔太多,很容易造嫌弃。所以提问人不同,应对思路是不一样的。今天我们先讲业务来提问。
1
推动业务的错误做法
很多同学一听“数据推动业务”,直观的想法就是:
这么干肯定被业务喷死
随便问几个问题:
1、谁来搞?
2、啥时候搞?
3、搞到多少?
4、花多少钱搞?
5、有这钱我搞别的不行吗?
6、用大转盘搞还是浇花种树搞?
7、浇花种树是送实物水果还是券?
8、用券搞还是积分搞还是礼品搞?
9、券派10、20、30、40、50……?
10、搞起来了但是转化率跌了行不?
一个都回答不上来。
错误在哪里?错误在把业务想简单了。即使看似简单的:“活跃率低了”真要付诸行动,也得考虑上边列出来的众多环节。并且这些环节里,有一些不是数据能直接解决的(比如签到活动的创意设计,浇花、种树、养金猪、造电器……这些靠加减乘除可算不出来)。所以想要推动业务,就得认真分类业务工作,找到数据的发力点。
2
推动业务的切入点
业务解决问题,从决定立项到执行完成,分为四大环节(如下图所示)
在整个过程中,数据分析不能包打天下。作为一种理性、量化的工具,更适合用于解决战略、战术决策工作,适合战况监控。至于战斗动作,数据只能作为参考,一个有经验的策划远远比加减乘除管用。因此合理安排输出产物,才能更好地推动业务去行动,而不是让业务患上数据依赖症:“你用人工智能大数据分析一下我这一幅画该几点红几点绿”——数据不是这么用的。
3
推动业务的顺序
清晰了输出内容,就可以规划推动顺序了。这里很多新人会犯个错误:指望一步到位,自己拼命做一个很细很细,细到可以执行的方案就算成功。这样一来直接替代了业务的工作,把自己累得半死。二来业务也不领情——“你算老几,你替我拿主意??!!”
要知道:没人能未卜先知,在一开始规划清楚所有事。推动业务的过程是循序渐进,在不断共识的基础上,从不清晰到清晰,逐步深入的。特别是一些关键节点:谁来负责,出多少预算,考核指标是什么,考核多少。这些是需要请示部门领导,甚至部门之间共识,和老板共识才能确认的。所以要沉住气,一步步来(如下图)。
4
推动业务的坑点
本篇讨论建立在“业务部门领导提问且亲自下场”的基础上,所以想做数据推动,是有强力的上层支持的。但有了尚方宝剑不见得真的敢拔出来随便砍人。在具体推动过程中,有一些新人常见坑点,必须注意:
坑点1:直接信了业务的判断。注意,业务的判断不见得都是基于数据,甚至不见得都是事实。很常见的,比如:
是滴,各种情绪、立场、单个事件,都会干扰到人们的判断。所以业务跟你说:我们活跃率不行;我们的转化还得加强;我们的用户体验不好的时候,一定要追溯的问题源头,落实到一个数字或者一件事上,具体讨论到底是啥问题。
坑点2:没有相关指标分析。很多非利润、成本类指标,都容易产生虚荣效应:
1、容易被刷高:大转盘一摇,活跃率铁高!
2、无实际产出:活跃高了又怎样,他又不买
3、无长期效果:短期刺激完又怎样?不做活动又跌
所以当业务关注这些指标的时候,一定要做相关的指标分析,特别是要关联到一个有最终考核意义的指标,比如利润、成本之类。至少要保证这几个主要指标是联动的,允许有虚荣成分,但是不能全是水。
坑点3:没有事前定义目标。这也是业务经常干的事:
1、我要提升活跃率——从多少提升到多少?不知道!
2、我要提升消费——从多少提升到多少?不知道!
3、我要拉动业绩——从多少拉动到多少?不知道!
4、我要激活用户——啥叫沉睡?咋算激活?不知道!
是滴,很多业务部门干活完全是凭经验,凭感觉,凭习惯。完全没思考过到底考核啥指标,又到底该做多少。一问就是不知道,要么就是说:“和自然状态下对比下?”问题是很多业务根本就是促销不断,活动不停,咋个自然状态法。所以想做数据推动,必须认认真真看数据定目标,不能含糊。
坑点4:过往策略没有收集。过往用过的策略目标,打法、效果,全部没有收集。导致需要数据支持的时候不知道看啥,最后还是凭经验决定(如下图)。
坑点5:创新方案没有标签。同上,创新方案想做测试,要有具体的标签才好后期做对比分析,不然只看一个很粗的响应结果,还是没法指导到设计的细节工作。
坑点6:测试方案不看整体。这是上一个问题的另一个极端,测试的时候太过计较细节,比如页面颜色,按钮左边右边,优惠券20、30纠结太多,导致见细节不见整提,到了用户那里:这啥破活动,不玩了。
坑点7:执行过程没做监控。急着上线,需求反反复复改,最后埋点没做好,数据没打通,结果吗,自然……
总之,数据推动业务,就像开车开导航一样。大家都觉得导航好用,可最后支撑导航功能的,却需要GPS定位,道路图,实时数据反馈,路线规划算法等等复杂系统。理论说起来容易,执行起来只能看菜下饭,且行且珍惜了。况且这还是在业务部门推动的情况下,如果是数据部门自己想推动,那就更得付一番精力。有兴趣的话,本篇集齐60在看,我们下一篇分享:数据部门如何提升数据驱动力。敬请期待哦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18