Keras 是源于 Theano 或 者TensorFlow 的一个深度学习框架,它的设计来源于Torch,编程语言使用的是 Python ,是一个拥有强大功能、内容抽象,而且高度模块化的神经网络库。
今天小编给大家分享的就是Keras 模型的保存与加载,希望对大家学习和使用Keras 有所帮助。
一、Keras模型保存和加载的基础介绍
Keras模型保存和加载一般是保存成hdf5格式。Keras模型主要有两种,序贯模型即Sequential、以及函数式模型Model,相对来说函数模型Model使用范围更广,序贯模型Sequential可看作是函数模型的一种特殊情况。
两类模型有一些方法是相同的:
model.summary():打印模型概况
model.get_config():返回包含模型配置信息的Python字典。
model.get_layer():依据层名或下标获得层对象
model.get_weights():返回模型权重张量的列表,类型为numpy array
model.set_weights():从numpy array里将权重载入给模型,要求数组具有与model.get_weights()相同的形状。
model.to_json:返回代表模型的JSON字符串,仅包含网络结构,不包含权值。
model.to_yaml:与model.to_json类似,同样可以从产生的YAML字符串中重构模型
model.save_weights(filepath):将模型权重保存到指定路径,文件类型是HDF5(后缀是.h5)
model.load_weights(filepath, by_name=False):从HDF5文件中加载权重到当前模型中, 默认情况下模型的结构将保持不变。如果想将权重载入不同的模型(有些层相同)中,则设置by_name=True,只有名字匹配的层才会载入权重
二、Keras模型保存和加载方式
1.保存所有状态
(1)保存模型和模型图
# 保存模型 model.save(file_path) model_name = '{}/{}_{}_{}_v2.h5'.format(params['model_dir'],params['filters'],params['pool_size_1'],params['pool_size_2']) model.save(model_name) # 保存模型图 from keras.utils import plot_model # 需要安装pip install pydot model_plot = '{}/{}_{}_{}_v2.png'.format(params['model_dir'],params['filters'],params['pool_size_1'],params['pool_size_2']) plot_model(model, to_file=model_plot)
(2)加载模型
from keras.models import load_model model_path = '../docs/keras/100_2_3_v2.h5' model = load_model(model_path)
利弊分析:
a.模型保存和加载就只需一行代码,写起来简单快捷
b.既能保存模型的结构和参数,又能保存训练配置等信息。方便我们从上次训练中断的地方再次进行训练优化。
c.占用空间过大,上传或者同步费时。
2.只保存模型结构和模型参数
(1)保存模型
import yaml import json # 保存模型结构到yaml文件或者json文件 yaml_string = model.to_yaml() open('../docs/keras/model_architecture.yaml', 'w').write(yaml_string) # json_string = model.to_json() # open('../docs/keras/model_architecture.json', 'w').write(json_string) # 保存模型参数到h5文件 model.save_weights('../docs/keras/model_weights.h5')
(2)加载模型
import yaml import json from keras.models import model_from_json from keras.models import model_from_yaml # 加载模型结构 model = model_from_yaml(open('../docs/keras/model_architecture.yaml').read()) # model = model_from_json(open('../docs/keras/model_architecture.json').read()) # 加载模型参数 model.load_weights('../docs/keras/model_weights.h5')
利弊分析:
a.能够节省硬盘空间,便于同步和协作
b.会丢失训练的一部分配置信息
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03