
最近python可是大火,各行各业的人都在学习python。既然要学习,那么基础知识就一定要掌握。列表降维了解一下啦!python是如何实现列表将为的呢?其实,python 的内置函数 sum() 能够接收两个参数,当第一个参数是二维列表,第二个参数是一维列表的时候,就能够实现列表降维的效果。下面,一起来看小编跟大家分享的这篇文章吧!
以下文章来源: Python猫
作者: 豌豆花下猫
上个月,学习群里的 S 同学问了个题目,大意可理解为列表降维 ,例子如下:
oldlist = [[1, 2, 3], [4, 5]] # 想得到结果: newlist = [1, 2, 3, 4, 5]
原始数据是一个二维列表,目的是获取该列表中所有元素的具体值。从抽象一点的角度来理解,也可看作是列表解压或者列表降维。
这个问题并不难,但是,怎么写才比较优雅呢?
# 方法一,粗暴拼接法: newlist = oldlist[0] + oldlist[1]
这种方法简单粗暴,需要拼接什么内容,就取出来直接拼接。然而,如果原列表有很多子列表,则这个方法就会变得繁琐了。
我们把原问题升级一下:一个二维列表包含 n 个一维列表元素,如何优雅地把这些子列表拼成一个新的一维列表?
方法一的做法需要写 n 个对象,以及 n - 1 次拼接操作。当然不可行。下面看看方法二:
# 方法二,列表推导式: newlist = [i for j in range(len(oldlist)) for i in oldlist[j]]
这个表达式中出现了两个 for 语句,在第一个 for 语句中,我们先取出原列表的长度,然后构造 range 对象,此时 j 的取值范围是 [0, n-1] 的闭区间。
在第二个 for 语句中,oldlist[j] 指的正是原列表的第 j 个子列表,for i in oldlist[j] 则会遍历取出 j 子列表的元素,由于 j 取值的区间正对应于原列表的全部索引值,所以,最终达到解题目的。
这种方法足够优雅了,而且理解也并不难。
然而,我们是否就能满足于此了呢?有没有其它奇技淫巧,哦不,是其它高级方法呢?F 同学贡献了一个思路:
# 方法三,巧用sum: newlist = sum(oldlist,[])
说实话,这个方法令我大感意外!sum() 函数不是用于求和的么?怎么竟然有此用法?
这个写法利用了什么原理呢?由于我开始时不知道 sum() 函数可以接收两个参数,不清楚它们是怎么用于计算的,所以一度很困惑。但是,当我知道 sum() 的完整用法时,我恍然大悟。
接下来也不卖关子了,直接揭晓吧。
语法:sum(iterable[, start]) ,sum() 函数的第一个参数是可迭代对象,如列表、元组或集合等,第二个参数是起始值,默认为 0 。其用途是以 start 值为基础,再与可迭代对象的所有元素相“加”。
在上例中,执行效果是 oldlist 中的子列表逐一与第二个参数相加,而列表的加法相当于 extend 操作,所以最终结果是由 [] 扩充成的列表。
这里有两个关键点:sum() 函数允许带两个参数,且第二个参数才是起点。 可能 sum() 函数用于数值求和比较多,然而用于作列表的求和,就有奇效。它比列表推导式更加优雅简洁!
至此,前面的升级版问题就得到了很好的回答。简单回顾一下,s 同学最初的问题可以用三种方法实现,第一种方法中规中矩,第二种方法正道进阶,而第三种方法旁门左道(没有贬义,只是说它出人意料,却效果奇佳)。
这道并不难的问题,在众人的讨论与分享后,竟还引出了很有价值的学习内容。前不久,同样是群内的一个问题,也产生了同样的学习效果,详见《Python进阶:如何将字符串常量转为变量?》。
我从中得到了一个启示:应该多角度地思考问题,设法寻求更优解,同时,基础知识应掌握牢固,并灵活贯通起来。
学无止境,这里我还想再开拓一下思路,看看能发现些什么。
1、如果原列表的元素除了列表,还有其它类型的元素,怎么把同类的元素归并在一起呢?
2、如果是一个三维或更高维的列表,怎么更好地把它们压缩成一维列表呢?
3、sum() 函数还有什么知识要点呢?
前两个问题增加了复杂度,解决起来似乎没有“灵丹妙药”了,只能用笨方法分别拆解,逐一解压。
第三个思考题是关于 sum() 函数本身的用法,我们看看官方文档是怎么说的:
The iterable’s items are normally numbers, and the start value is not allowed to be a string.
For some use cases, there are good alternatives to sum(). The preferred, fast way to concatenate a sequence of strings is by calling ''.join(sequence). To add floating point values with extended precision, see math.fsum(). To concatenate a series of iterables, consider using itertools.chain().
sum() 的第二个参数不允许是字符串。如果用了,会报错:
TypeError: sum() can't sum strings [use ''.join(seq) instead]
为什么不建议使用 sum() 来拼接字符串呢?哈哈,文档中建议使用 join() 方法,因为它更快。为了不给我们使用慢的方法,它竟特别限定不允许 sum() 的第二个参数是字符串。
文档还建议,在某些使用场景时,不要用 sum() ,例如当以扩展精度对浮点数求和时,推荐使用 math.fsum() ;当要拼接一系列的可迭代对象时,应考虑使用itertools.chain() 。
浮点数的计算是个难题,我曾转载过一篇《如何在 Python 里面精确四舍五入?》,对此有精彩分析。而itertools.chain() 可以将不同类型的可迭代对象串联成一个更大的迭代器,这在旧文《Python进阶:设计模式之迭代器模式》中也有论及。
不经意间,sum() 函数的注意事项,竟把 Python 其它的进阶内容都联系起来了。小小的函数,竟成为学习之路上的一个枢纽。
前段时间,我还写过 range() 、locals() 和 eval() 等内置函数,也是通过一个问题点,而关联出多个知识点, 获益良多。这些内置函数/类的魔力可真不小啊。
本文到此结束,希望对你有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08