京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在上一篇文章(python在手,女神视频轻松有)分享了用AI人脸识别技术标记人物出现时间点来截取视频片段的教程,它的局限性在于只能通过识别特定的对象(比如人脸)来操作。在本文中将分享一个按场景进行分割视频的工具——PySceneDetect。
下面开始介绍下PySceneDetect及其安装使用方法。
PySceneDetect是一个命令行工具和Python库,用于分析视频,查找场景更改或剪辑。
PySceneDetect集成了外部工具(例如mkvmerge , ffmpeg ),可在使用split-video命令时自动将视频分割为单个片段。还可以为视频生成逐帧分析,称为统计文件,以帮助确定最佳阈值或检测特定视频的模式/其他分析方法。
PySceneDetect使用两种主要的检测方法:detect-threshold (将每个帧与设置的黑电平进行比较,对于检测从黑色到黑色的淡入和淡出有用)和detect-content (比较每个帧,依次查找内容的变化,有用)用于检测视频场景之间的快速切换,尽管处理速度较慢)。每种模式的参数略有不同,并在文档中进行了详细说明.。
通常,如果要使用淡入/淡出/切成黑色来检测场景边界,请使用检测阈值模式。如果视频在内容之间使用大量快速剪切,并且没有明确定义的场景边界,则应使用" 检测内容"模式。一旦知道要使用哪种检测模式,就可以尝试以下建议的参数,或生成统计文件(使用-s / –stats参数),以确定正确的参数-具体来说,是正确的阈值.
PySceneDetect依赖于Python模块numpy,OpenCV(cv2模块)和tqdm(进度条模块,用来显示处理进度),安装命令如下:
$ pip install scenedetect
PySceneDetect基于ffmpeg和mkvmerge对视频进行裁剪。
ffmpeg 是一个开源软件,可以运行音频和视频多种格式的录影、转换、流功能,它功能强大,用途广泛,是视频处理最常用的开源软件。
mkvmerge是MKV工具集MKVToolNix中的一个软件,可以将多媒体文件封装、合并、混流为 MKV 文件。
安装完成后可以通过命令行或代码两种方式进行使用。
PySceneDetect在命令行中使用scenedetect命令进行操作,命令格式如下:
$ scenedetect --input my_video.mp4 --output my_video_scenes --stats my_video.stats.csv detect-content list-scenes save-images
参数说明:
常用的参数说明如下:
完整的参数列表可使用scenedetect help all命令进行查看。
示例:
$ scenedetect --input demo.mp4 detect-content list-scenes save-images split-video
运行完成后会在当前文件夹生成视频片段,片段截图以及csv文件,如下:
demo-Scene-001-01.jpg demo-Scene-004-03.jpg ... demo-Scene-001-02.jpg demo-Scene-004.mp4 ... demo-Scenes.csv
csv文件中包含片段的帧、时间、长度等信息,内容如下:
Timecode List: 00:07.9 00:14.6 00:38.7 00:45.3 00:48.9 01:00.0 01:12.3 01:21.5 01:36.3 Scene Number Start Frame Start Timecode Start Time (seconds) End Frame End Timecode End Time (seconds) Length (frames) Length (timecode) Length (seconds) 1 0 00:00.0 0 190 00:07.9 7.917 190 00:07.9 7.917 2 190 00:07.9 7.917 350 00:14.6 14.583 160 00:06.7 6.667 3 350 00:14.6 14.583 928 00:38.7 38.667 578 00:24.1 24.083 ...
在Python中使用PySceneDetect主要用到下面几个类:
官方的示例代码如下:
from __future__ import print_function
import os
import scenedetect
from scenedetect.video_manager import VideoManager
from scenedetect.scene_manager import SceneManager
from scenedetect.frame_timecode import FrameTimecode
from scenedetect.stats_manager import StatsManager
from scenedetect.detectors import ContentDetector
STATS_FILE_PATH = 'testvideo.stats.csv'
def main():
# Create a video_manager point to video file testvideo.mp4. Note that multiple
# videos can be appended by simply specifying more file paths in the list
# passed to the VideoManager constructor. Note that appending multiple videos
# requires that they all have the same frame size, and optionally, framerate.
video_manager = VideoManager(['testvideo.mp4'])
stats_manager = StatsManager()
scene_manager = SceneManager(stats_manager)
# Add ContentDetector algorithm (constructor takes detector options like threshold).
scene_manager.add_detector(ContentDetector())
base_timecode = video_manager.get_base_timecode()
try:
# If stats file exists, load it.
if os.path.exists(STATS_FILE_PATH):
# Read stats from CSV file opened in read mode:
with open(STATS_FILE_PATH, 'r') as stats_file:
stats_manager.load_from_csv(stats_file, base_timecode)
start_time = base_timecode + 20 # 00:00:00.667
end_time = base_timecode + 20.0 # 00:00:20.000
# Set video_manager duration to read frames from 00:00:00 to 00:00:20.
video_manager.set_duration(start_time=start_time, end_time=end_time)
# Set downscale factor to improve processing speed.
video_manager.set_downscale_factor()
# Start video_manager.
video_manager.start()
# Perform scene detection on video_manager.
scene_manager.detect_scenes(frame_source=video_manager)
# Obtain list of detected scenes.
scene_list = scene_manager.get_scene_list(base_timecode)
# Like FrameTimecodes, each scene in the scene_list can be sorted if the
# list of scenes becomes unsorted.
print('List of scenes obtained:')
for i, scene in enumerate(scene_list):
print(' Scene %2d: Start %s / Frame %d, End %s / Frame %d' % (
i+1,
scene[0].get_timecode(), scene[0].get_frames(),
scene[1].get_timecode(), scene[1].get_frames(),))
# We only write to the stats file if a save is required:
if stats_manager.is_save_required():
with open(STATS_FILE_PATH, 'w') as stats_file:
stats_manager.save_to_csv(stats_file, base_timecode)
finally:
video_manager.release()
if __name__ == "__main__":
main()
代码地址
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26