
在上一篇文章(python在手,女神视频轻松有)分享了用AI人脸识别技术标记人物出现时间点来截取视频片段的教程,它的局限性在于只能通过识别特定的对象(比如人脸)来操作。在本文中将分享一个按场景进行分割视频的工具——PySceneDetect。
下面开始介绍下PySceneDetect及其安装使用方法。
PySceneDetect是一个命令行工具和Python库,用于分析视频,查找场景更改或剪辑。
PySceneDetect集成了外部工具(例如mkvmerge , ffmpeg ),可在使用split-video命令时自动将视频分割为单个片段。还可以为视频生成逐帧分析,称为统计文件,以帮助确定最佳阈值或检测特定视频的模式/其他分析方法。
PySceneDetect使用两种主要的检测方法:detect-threshold (将每个帧与设置的黑电平进行比较,对于检测从黑色到黑色的淡入和淡出有用)和detect-content (比较每个帧,依次查找内容的变化,有用)用于检测视频场景之间的快速切换,尽管处理速度较慢)。每种模式的参数略有不同,并在文档中进行了详细说明.。
通常,如果要使用淡入/淡出/切成黑色来检测场景边界,请使用检测阈值模式。如果视频在内容之间使用大量快速剪切,并且没有明确定义的场景边界,则应使用" 检测内容"模式。一旦知道要使用哪种检测模式,就可以尝试以下建议的参数,或生成统计文件(使用-s / –stats参数),以确定正确的参数-具体来说,是正确的阈值.
PySceneDetect依赖于Python模块numpy,OpenCV(cv2模块)和tqdm(进度条模块,用来显示处理进度),安装命令如下:
$ pip install scenedetect
PySceneDetect基于ffmpeg和mkvmerge对视频进行裁剪。
ffmpeg 是一个开源软件,可以运行音频和视频多种格式的录影、转换、流功能,它功能强大,用途广泛,是视频处理最常用的开源软件。
mkvmerge是MKV工具集MKVToolNix中的一个软件,可以将多媒体文件封装、合并、混流为 MKV 文件。
安装完成后可以通过命令行或代码两种方式进行使用。
PySceneDetect在命令行中使用scenedetect命令进行操作,命令格式如下:
$ scenedetect --input my_video.mp4 --output my_video_scenes --stats my_video.stats.csv detect-content list-scenes save-images
参数说明:
常用的参数说明如下:
完整的参数列表可使用scenedetect help all命令进行查看。
示例:
$ scenedetect --input demo.mp4 detect-content list-scenes save-images split-video
运行完成后会在当前文件夹生成视频片段,片段截图以及csv文件,如下:
demo-Scene-001-01.jpg demo-Scene-004-03.jpg ... demo-Scene-001-02.jpg demo-Scene-004.mp4 ... demo-Scenes.csv
csv文件中包含片段的帧、时间、长度等信息,内容如下:
Timecode List: 00:07.9 00:14.6 00:38.7 00:45.3 00:48.9 01:00.0 01:12.3 01:21.5 01:36.3 Scene Number Start Frame Start Timecode Start Time (seconds) End Frame End Timecode End Time (seconds) Length (frames) Length (timecode) Length (seconds) 1 0 00:00.0 0 190 00:07.9 7.917 190 00:07.9 7.917 2 190 00:07.9 7.917 350 00:14.6 14.583 160 00:06.7 6.667 3 350 00:14.6 14.583 928 00:38.7 38.667 578 00:24.1 24.083 ...
在Python中使用PySceneDetect主要用到下面几个类:
官方的示例代码如下:
from __future__ import print_function import os import scenedetect from scenedetect.video_manager import VideoManager from scenedetect.scene_manager import SceneManager from scenedetect.frame_timecode import FrameTimecode from scenedetect.stats_manager import StatsManager from scenedetect.detectors import ContentDetector STATS_FILE_PATH = 'testvideo.stats.csv' def main(): # Create a video_manager point to video file testvideo.mp4. Note that multiple # videos can be appended by simply specifying more file paths in the list # passed to the VideoManager constructor. Note that appending multiple videos # requires that they all have the same frame size, and optionally, framerate. video_manager = VideoManager(['testvideo.mp4']) stats_manager = StatsManager() scene_manager = SceneManager(stats_manager) # Add ContentDetector algorithm (constructor takes detector options like threshold). scene_manager.add_detector(ContentDetector()) base_timecode = video_manager.get_base_timecode() try: # If stats file exists, load it. if os.path.exists(STATS_FILE_PATH): # Read stats from CSV file opened in read mode: with open(STATS_FILE_PATH, 'r') as stats_file: stats_manager.load_from_csv(stats_file, base_timecode) start_time = base_timecode + 20 # 00:00:00.667 end_time = base_timecode + 20.0 # 00:00:20.000 # Set video_manager duration to read frames from 00:00:00 to 00:00:20. video_manager.set_duration(start_time=start_time, end_time=end_time) # Set downscale factor to improve processing speed. video_manager.set_downscale_factor() # Start video_manager. video_manager.start() # Perform scene detection on video_manager. scene_manager.detect_scenes(frame_source=video_manager) # Obtain list of detected scenes. scene_list = scene_manager.get_scene_list(base_timecode) # Like FrameTimecodes, each scene in the scene_list can be sorted if the # list of scenes becomes unsorted. print('List of scenes obtained:') for i, scene in enumerate(scene_list): print(' Scene %2d: Start %s / Frame %d, End %s / Frame %d' % ( i+1, scene[0].get_timecode(), scene[0].get_frames(), scene[1].get_timecode(), scene[1].get_frames(),)) # We only write to the stats file if a save is required: if stats_manager.is_save_required(): with open(STATS_FILE_PATH, 'w') as stats_file: stats_manager.save_to_csv(stats_file, base_timecode) finally: video_manager.release() if __name__ == "__main__": main()
代码地址
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08