京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在上一篇文章(python在手,女神视频轻松有)分享了用AI人脸识别技术标记人物出现时间点来截取视频片段的教程,它的局限性在于只能通过识别特定的对象(比如人脸)来操作。在本文中将分享一个按场景进行分割视频的工具——PySceneDetect。
下面开始介绍下PySceneDetect及其安装使用方法。
PySceneDetect是一个命令行工具和Python库,用于分析视频,查找场景更改或剪辑。
PySceneDetect集成了外部工具(例如mkvmerge , ffmpeg ),可在使用split-video命令时自动将视频分割为单个片段。还可以为视频生成逐帧分析,称为统计文件,以帮助确定最佳阈值或检测特定视频的模式/其他分析方法。
PySceneDetect使用两种主要的检测方法:detect-threshold (将每个帧与设置的黑电平进行比较,对于检测从黑色到黑色的淡入和淡出有用)和detect-content (比较每个帧,依次查找内容的变化,有用)用于检测视频场景之间的快速切换,尽管处理速度较慢)。每种模式的参数略有不同,并在文档中进行了详细说明.。
通常,如果要使用淡入/淡出/切成黑色来检测场景边界,请使用检测阈值模式。如果视频在内容之间使用大量快速剪切,并且没有明确定义的场景边界,则应使用" 检测内容"模式。一旦知道要使用哪种检测模式,就可以尝试以下建议的参数,或生成统计文件(使用-s / –stats参数),以确定正确的参数-具体来说,是正确的阈值.
PySceneDetect依赖于Python模块numpy,OpenCV(cv2模块)和tqdm(进度条模块,用来显示处理进度),安装命令如下:
$ pip install scenedetect
PySceneDetect基于ffmpeg和mkvmerge对视频进行裁剪。
ffmpeg 是一个开源软件,可以运行音频和视频多种格式的录影、转换、流功能,它功能强大,用途广泛,是视频处理最常用的开源软件。
mkvmerge是MKV工具集MKVToolNix中的一个软件,可以将多媒体文件封装、合并、混流为 MKV 文件。
安装完成后可以通过命令行或代码两种方式进行使用。
PySceneDetect在命令行中使用scenedetect命令进行操作,命令格式如下:
$ scenedetect --input my_video.mp4 --output my_video_scenes --stats my_video.stats.csv detect-content list-scenes save-images
参数说明:
常用的参数说明如下:
完整的参数列表可使用scenedetect help all命令进行查看。
示例:
$ scenedetect --input demo.mp4 detect-content list-scenes save-images split-video
运行完成后会在当前文件夹生成视频片段,片段截图以及csv文件,如下:
demo-Scene-001-01.jpg demo-Scene-004-03.jpg ... demo-Scene-001-02.jpg demo-Scene-004.mp4 ... demo-Scenes.csv
csv文件中包含片段的帧、时间、长度等信息,内容如下:
Timecode List: 00:07.9 00:14.6 00:38.7 00:45.3 00:48.9 01:00.0 01:12.3 01:21.5 01:36.3 Scene Number Start Frame Start Timecode Start Time (seconds) End Frame End Timecode End Time (seconds) Length (frames) Length (timecode) Length (seconds) 1 0 00:00.0 0 190 00:07.9 7.917 190 00:07.9 7.917 2 190 00:07.9 7.917 350 00:14.6 14.583 160 00:06.7 6.667 3 350 00:14.6 14.583 928 00:38.7 38.667 578 00:24.1 24.083 ...
在Python中使用PySceneDetect主要用到下面几个类:
官方的示例代码如下:
from __future__ import print_function
import os
import scenedetect
from scenedetect.video_manager import VideoManager
from scenedetect.scene_manager import SceneManager
from scenedetect.frame_timecode import FrameTimecode
from scenedetect.stats_manager import StatsManager
from scenedetect.detectors import ContentDetector
STATS_FILE_PATH = 'testvideo.stats.csv'
def main():
# Create a video_manager point to video file testvideo.mp4. Note that multiple
# videos can be appended by simply specifying more file paths in the list
# passed to the VideoManager constructor. Note that appending multiple videos
# requires that they all have the same frame size, and optionally, framerate.
video_manager = VideoManager(['testvideo.mp4'])
stats_manager = StatsManager()
scene_manager = SceneManager(stats_manager)
# Add ContentDetector algorithm (constructor takes detector options like threshold).
scene_manager.add_detector(ContentDetector())
base_timecode = video_manager.get_base_timecode()
try:
# If stats file exists, load it.
if os.path.exists(STATS_FILE_PATH):
# Read stats from CSV file opened in read mode:
with open(STATS_FILE_PATH, 'r') as stats_file:
stats_manager.load_from_csv(stats_file, base_timecode)
start_time = base_timecode + 20 # 00:00:00.667
end_time = base_timecode + 20.0 # 00:00:20.000
# Set video_manager duration to read frames from 00:00:00 to 00:00:20.
video_manager.set_duration(start_time=start_time, end_time=end_time)
# Set downscale factor to improve processing speed.
video_manager.set_downscale_factor()
# Start video_manager.
video_manager.start()
# Perform scene detection on video_manager.
scene_manager.detect_scenes(frame_source=video_manager)
# Obtain list of detected scenes.
scene_list = scene_manager.get_scene_list(base_timecode)
# Like FrameTimecodes, each scene in the scene_list can be sorted if the
# list of scenes becomes unsorted.
print('List of scenes obtained:')
for i, scene in enumerate(scene_list):
print(' Scene %2d: Start %s / Frame %d, End %s / Frame %d' % (
i+1,
scene[0].get_timecode(), scene[0].get_frames(),
scene[1].get_timecode(), scene[1].get_frames(),))
# We only write to the stats file if a save is required:
if stats_manager.is_save_required():
with open(STATS_FILE_PATH, 'w') as stats_file:
stats_manager.save_to_csv(stats_file, base_timecode)
finally:
video_manager.release()
if __name__ == "__main__":
main()
代码地址
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08