pandas 是为了解决数据分析任务而创建的Python 库,源于NumPy ,经常被用于对数据挖掘前期数据的处理工作。pandas提供了大量的处理数据的函数和方法,并且还纳入了大量库与很多标准的数据模型,能让我们更加高效地处理大型数据集。但是大家在使用pandas的过程中,经常会遇到这样那样的问题,下面,小编就整理了一些大家需要掌握的pandas 的基础知识,希望对大家有所帮助。
以下文章来源于: 数据分析1480
作者:刘顺祥
背景介绍
经常会有一些朋友问我类似的问题,“哎呀,这个数据该怎么处理啊,我希望结果是这样的,麻烦刘老师帮我看看。”、“刘老师,怎么把一列数据拆分出来,并取出最后一个拆分结果呀?”、“刘老师,怎么将Json数据读入到Python中呢?”。在我看来,这些问题都可以借助于Pandas模块完成,因为Pandas属于专门做数据预处理的数据科学包。下面来介绍一下我认为Pandas模块中需要掌握的功能和函数。
数据读写
案例演示
# 读入MySQL数据库数据 # 导入第三方模块 import pymysql # 连接MySQL数据库 conn = pymysql.connect(host='localhost', user='root', password='test', database='test', port=3306, charset='utf8') # 读取数据 user = pd.read_sql('select * from topy', conn) # 关闭连接 conn.close() # 数据输出 User
数据初印象
案例演示
# 数据读取 sec_cars = pd.read_table(r'C:\Users\Administrator\Desktop\sec_cars.csv', sep = ',') # 预览数据的前五行 sec_cars.head() # 查看数据的行列数 print('数据集的行列数:\n',sec_cars.shape) # 查看数据集每个变量的数据类型 print('各变量的数据类型:\n',sec_cars.dtypes) # 数据的描述性统计 sec_cars.describe()
案例演示
# 数据读入 df = pd.read_excel(r'C:\Users\Administrator\Desktop\data_test05.xlsx') # 缺失观测的检测 print('数据集中是否存在缺失值:\n',any(df.isnull())) # 删除法之记录删除 df.dropna() # 删除法之变量删除 df.drop('age', axis = 1) # 替换法之前向替换 df.fillna(method = 'ffill') # 替换法之后向替换 df.fillna(method = 'bfill') # 替换法之常数替换 df.fillna(value = 0) # 替换法之统计值替换 df.fillna(value = {'gender':df.gender.mode()[0], 'age':df.age.mean(), 'income':df.income.median()})
类型转换与元素及运算
案例演示
# 数据读入 df = pd.read_excel(r'C:\Users\Administrator\Desktop\data_test03.xlsx') # 将birthday变量转换为日期型 df.birthday = pd.to_datetime(df.birthday, format = '%Y/%m/%d') # 将手机号转换为字符串 df.tel = df.tel.astype('str') # 新增年龄和工龄两列 df['age'] = pd.datetime.today().year - df.birthday.dt.year df['workage'] = pd.datetime.today().year - df.start_work.dt.year # 将手机号中间四位隐藏起来 df.tel = df.tel.apply(func = lambda x : x.replace(x[3:7], '****')) # 取出邮箱的域名 df['email_domain'] = df.email.apply(func = lambda x : x.split('@')[1]) # 取出人员的专业信息 df['profession'] = df.other.str.findall('专业:(.*?),') # 去除birthday、start_work和other变量 df.drop(['birthday','start_work','other'], axis = 1, inplace = True)
数据合并、连接与汇总
案例演示
# 构造数据集df1和df2 df1 = pd.DataFrame({'name':['张三','李四','王二'], 'age':[21,25,22], 'gender':['男','女','男']}) df2 = pd.DataFrame({'name':['丁一','赵五'], 'age':[23,22], 'gender':['女','女']}) # 数据集的纵向合并 pd.concat([df1,df2] , keys = ['df1','df2']) # 如果df2数据集中的“姓名变量为Name” df2 = pd.DataFrame({'Name':['丁一','赵五'], 'age':[23,22], 'gender':['女','女']}) # 数据集的纵向合并 pd.concat([df1,df2]) # 构造数据集 df3 = pd.DataFrame({'id':[1,2,3,4,5],'name':['张三','李四','王二','丁一','赵五'], 'age':[27,24,25,23,25],'gender':['男','男','男','女','女']}) df4 = pd.DataFrame({'Id':[1,2,2,4,4,4,5], 'score':[83,81,87,75,86,74,88] 'kemu':['科目1','科目1','科目2','科目1','科目2','科目3','科目1']}) df5 = pd.DataFrame({'id':[1,3,5],'name':['张三','王二','赵五'], 'income':[13500,18000,15000]}) # 三表的数据连接 # 首先df3和df4连接 merge1 = pd.merge(left = df3, right = df4, how = 'left', left_on='id', right_on='Id') merge1 # 再将连接结果与df5连接 merge2 = pd.merge(left = merge1, right = df5, how = 'left') merge2
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14