京公网安备 11010802034615号
经营许可证编号:京B2-20210330
pandas 是为了解决数据分析任务而创建的Python 库,源于NumPy ,经常被用于对数据挖掘前期数据的处理工作。pandas提供了大量的处理数据的函数和方法,并且还纳入了大量库与很多标准的数据模型,能让我们更加高效地处理大型数据集。但是大家在使用pandas的过程中,经常会遇到这样那样的问题,下面,小编就整理了一些大家需要掌握的pandas 的基础知识,希望对大家有所帮助。
以下文章来源于: 数据分析1480
作者:刘顺祥
背景介绍
经常会有一些朋友问我类似的问题,“哎呀,这个数据该怎么处理啊,我希望结果是这样的,麻烦刘老师帮我看看。”、“刘老师,怎么把一列数据拆分出来,并取出最后一个拆分结果呀?”、“刘老师,怎么将Json数据读入到Python中呢?”。在我看来,这些问题都可以借助于Pandas模块完成,因为Pandas属于专门做数据预处理的数据科学包。下面来介绍一下我认为Pandas模块中需要掌握的功能和函数。
数据读写
案例演示
# 读入MySQL数据库数据 # 导入第三方模块 import pymysql # 连接MySQL数据库 conn = pymysql.connect(host='localhost', user='root', password='test', database='test', port=3306, charset='utf8') # 读取数据 user = pd.read_sql('select * from topy', conn) # 关闭连接 conn.close() # 数据输出 User
数据初印象
案例演示
# 数据读取
sec_cars = pd.read_table(r'C:\Users\Administrator\Desktop\sec_cars.csv', sep = ',')
# 预览数据的前五行
sec_cars.head()
# 查看数据的行列数
print('数据集的行列数:\n',sec_cars.shape)
# 查看数据集每个变量的数据类型
print('各变量的数据类型:\n',sec_cars.dtypes)
# 数据的描述性统计
sec_cars.describe()
案例演示
# 数据读入
df = pd.read_excel(r'C:\Users\Administrator\Desktop\data_test05.xlsx')
# 缺失观测的检测
print('数据集中是否存在缺失值:\n',any(df.isnull()))
# 删除法之记录删除
df.dropna()
# 删除法之变量删除
df.drop('age', axis = 1)
# 替换法之前向替换
df.fillna(method = 'ffill')
# 替换法之后向替换
df.fillna(method = 'bfill')
# 替换法之常数替换
df.fillna(value = 0)
# 替换法之统计值替换
df.fillna(value = {'gender':df.gender.mode()[0], 'age':df.age.mean(),
'income':df.income.median()})
类型转换与元素及运算
案例演示
# 数据读入
df = pd.read_excel(r'C:\Users\Administrator\Desktop\data_test03.xlsx')
# 将birthday变量转换为日期型
df.birthday = pd.to_datetime(df.birthday, format = '%Y/%m/%d')
# 将手机号转换为字符串
df.tel = df.tel.astype('str')
# 新增年龄和工龄两列
df['age'] = pd.datetime.today().year - df.birthday.dt.year
df['workage'] = pd.datetime.today().year - df.start_work.dt.year
# 将手机号中间四位隐藏起来
df.tel = df.tel.apply(func = lambda x : x.replace(x[3:7], '****'))
# 取出邮箱的域名
df['email_domain'] = df.email.apply(func = lambda x : x.split('@')[1])
# 取出人员的专业信息
df['profession'] = df.other.str.findall('专业:(.*?),')
# 去除birthday、start_work和other变量
df.drop(['birthday','start_work','other'], axis = 1, inplace = True)
数据合并、连接与汇总
案例演示
# 构造数据集df1和df2 df1 = pd.DataFrame({'name':['张三','李四','王二'], 'age':[21,25,22], 'gender':['男','女','男']}) df2 = pd.DataFrame({'name':['丁一','赵五'], 'age':[23,22], 'gender':['女','女']}) # 数据集的纵向合并 pd.concat([df1,df2] , keys = ['df1','df2']) # 如果df2数据集中的“姓名变量为Name” df2 = pd.DataFrame({'Name':['丁一','赵五'], 'age':[23,22], 'gender':['女','女']}) # 数据集的纵向合并 pd.concat([df1,df2]) # 构造数据集 df3 = pd.DataFrame({'id':[1,2,3,4,5],'name':['张三','李四','王二','丁一','赵五'], 'age':[27,24,25,23,25],'gender':['男','男','男','女','女']}) df4 = pd.DataFrame({'Id':[1,2,2,4,4,4,5], 'score':[83,81,87,75,86,74,88] 'kemu':['科目1','科目1','科目2','科目1','科目2','科目3','科目1']}) df5 = pd.DataFrame({'id':[1,3,5],'name':['张三','王二','赵五'], 'income':[13500,18000,15000]}) # 三表的数据连接 # 首先df3和df4连接 merge1 = pd.merge(left = df3, right = df4, how = 'left', left_on='id', right_on='Id') merge1 # 再将连接结果与df5连接 merge2 = pd.merge(left = merge1, right = df5, how = 'left') merge2
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27