京公网安备 11010802034615号
经营许可证编号:京B2-20210330
今天小编给大家带来的是现在非常火爆的机器学习方法——集成学习。集成学习,顾名思义,通过将多个单个学习器集成/组合在一起,使它们共同完成学习任务,有时也被称为“多分类器系统(multi-classifier system)”、基于委员会的学习(Committee-based learning)。
它本身不是一个单独的机器学习算法,而是通过构建并结合多个机器学习器来完成学习任务。也就是我们常说的“博采众长”。集成学习可以用于分类问题集成,回归问题集成,特征选取集成,异常点检测集成等等,可以说所有的机器学习领域都可以看到集成学习的身影。
一般集成学习会通过重采样获得一定数量的样本,然后训练多个弱学习器(分类精度稍大于50%),采用投票法,即“少数服从多数”原则来选择分类结果,当少数学习器出现错误时,也可以通过多数学习器来纠正结果。
集成学习分类
目前根据个体学习器的生成方式,集成学习可以分为两大类:
1)个体学习器之间存在较强的依赖性,必须串行生成的序列化方法:boosting类算法;
Boosting是一簇可将弱学习器提升为强学习器的算法。其工作机制为:先从初始训练集训练出一个基学习器,再根据基学习器的表现对样本分布进行调整,使得先前的基学习器做错的训练样本在后续收到更多的关注,然后基于调整后的样本分布来训练下一个基学习器;如此重复进行,直至基学习器数目达到实现指定的值T,或整个集成结果达到退出条件,然后将这些学习器进行加权结合。
2)个体学习器之间不存在强依赖关系,可以并行生成学习器:bagging和随机森林
Bagging的算法原理和 boosting不同,它的弱学习器之间没有依赖关系,可以并行生成。
Bagging的基本流程:
1.经过T轮自助采样,可以得到T个包含m个训练样本的采样集。
2.然后基于每个采样集训练出一个基学习器。
3.最后将这T个基学习器进行组合,得到集成模型。
随机森林(Random Forest,简称RF) 是Bagging的一个扩展变体。
随机森林对Bagging做了小改动:
1.Bagging中基学习器的“多样性”来自于样本扰动。样本扰动来自于对初始训练集的随机采样。
2.随机森林中的基学习器的多样性不仅来自样本扰动,还来自属性扰动。
3.这就是使得最终集成的泛化性能可以通过个体学习器之间差异度的增加而进一步提升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29