SVM和LR是机器学习中常用的算法,今天就让我们来看一下这两者有哪些相同点和不同点吧。
SVM和LR的相同点:
2.LR和SVM都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题)
3.两个方法都可以增加不同的正则化项,如l1、l2等等。所以在很多实验中,两种算法的结果是很接近的。
4.LR和SVM都是判别模型。
5.LR和SVM在学术界和工业界都广为人知并且应用广泛。
SVM和LR的不同点:
1.样本点对模型的作用不同。SVM只有关键的样本点(支持向量)对模型结果有影响,而LR每一个样本点都对模型有影响。
2.损失函数不同。SVM是hinge损失函数,LR是log损失函数。这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重。
3.理论基础不同。SVM基于严格的数学推导,LR基于统计,可解释性比SVM好。
4.输出不同。LR可以对每个样本点给出类别判断的概率值,SVM无法做到。
5.可处理的特征空间维度不同。LR在特征空间维度很高时,表现较差。SVM则可以通过对偶求解高效应对这一挑战。
6.防过拟合能力不同。SVM模型中内含了L2正则,可有效防止过拟合。LR要自己添加正则项。
7.处理非线性分类问题能力不同。SVM可通过核函数灵活地将非线性问题转化为线性分类问题。LR需要手动进行特征转换。
8.计算复杂度不同。对于海量数据,SVM的效率较低,LR效率比较高。
9.能力范围不同。 SVM拓展后,可解决回归问题,LR不能。
数据分析咨询请扫描二维码
数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10在如今的数据驱动世界,数据分析师在各行各业中扮演着至关重要的角色。随着企业越来越依赖数据决策,数据分析职位的需求不断增加 ...
2024-11-10在信息爆炸的时代,做出正确的数据分析方法选择变得尤为重要。这不仅影响到数据分析的准确性,更关系到最终的决策效果。本文将详 ...
2024-11-10在当今竞争激烈的市场环境中,准确地把握市场动态和消费者需求是企业成功的关键。数据分析以其科学严谨的方法论,成为市场研究的 ...
2024-11-09在数据驱动的世界中,准确的数据分析是成功决策的基石。然而,数据分析的准确性并非一蹴而就,它需要多种方法和步骤的综合应用。 ...
2024-11-09推动银行的数字化转型是一个复杂且多维度的过程,涉及从战略、技术、组织到业务的多方面综合考量。这不仅仅是技术层面的变革,更 ...
2024-11-09国有企业作为国家经济的重要支柱,在提升经济效益和市场竞争力方面扮演着关键角色。然而,面对日益激烈的市场竞争和复杂的经济环 ...
2024-11-09业务分析师(Business Analyst,简称BA)是现代企业中不可或缺的角色。他们不仅是需求分析的专家,更是企业战略规划中的重要参与 ...
2024-11-09银行业正面临着一场全方位的数字化革命,旨在提升服务效率和客户体验,同时优化运营和增收。在这篇文章中,我们通过分析一些成功 ...
2024-11-09数据挖掘技术正在重新定义现代市场营销的方式。对于企业来说,能够深入了解消费者行为、需求和偏好是实现精准市场营销的关键, ...
2024-11-09在当今数据驱动的世界中,数据分析可视化已经成为一种必不可少的技能。它不仅帮助专业的数据分析师更好地传达信息,也使复杂的数 ...
2024-11-09在如今的数据驱动时代,掌握数据分析的工具和方法不仅是提高工作效率的关键,也是开拓职业机会的重要技能。数据分析涉及从数据的 ...
2024-11-08在现代商业环境中,企业正在逐步认识到数据挖掘技术在客户行为分析中的重要性。通过深度分析客户数据,这项技术不仅可以帮助企业 ...
2024-11-08数据挖掘分析是从大量数据中发现隐藏模式和有用信息的过程。尤其是在图数据挖掘中,提供了分析复杂关系和结构的独特视角。图数据 ...
2024-11-08